Knot Embeddings in Improper Foldings

Joseph Slote & Thomas Bertschinger September 6, 2018

7OSME Oxford, UK

We get...

• **Proper foldings**, which are physically realizable and never admit knots, and

We get...

- **Proper foldings**, which are physically realizable and never admit knots, and
- Improper foldings, which require self-intersection of the paper, but which can map simple loops in the paper to arbitrary knots in the image.

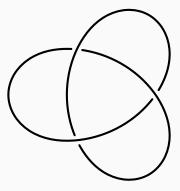
We get...

- **Proper foldings**, which are physically realizable and never admit knots, and
- Improper foldings, which require self-intersection of the paper, but which can map simple loops in the paper to arbitrary knots in the image.
- Improper foldings allow us to measure the complexity of knots using crease patterns, as captured by the **fold number**.

A quick refresher...

Definition

A **knot** is an embedding of the circle in \mathbb{R}^3 .

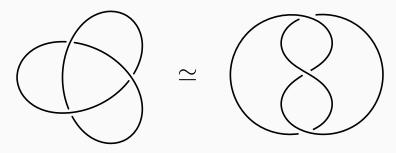


A quick refresher...

Definition

A **knot** is an embedding of the circle in \mathbb{R}^3 .

Two knots are **equivalent** if one can become the other through a continuous deformation (ambient isotopy).

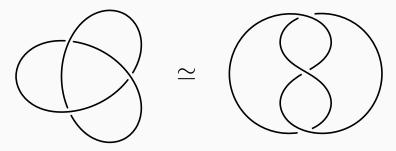


A quick refresher...

Definition

A **knot** is an embedding of the circle in \mathbb{R}^3 .

Two knots are **equivalent** if one can become the other through a continuous deformation (ambient isotopy).



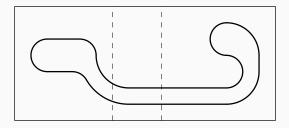
If a knot is equivalent to a planar circle, we call it a trivial knot, or an **unknot**.

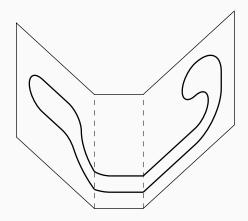
Motivation

Jacques Justin conjectured¹:

"The set of the Jordan curves which are the boundary of F constitutes a link or knot equivalent to a trivial one."

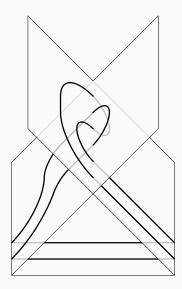
¹"Towards a Mathematical Theory of Origami" (1997)

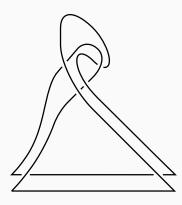


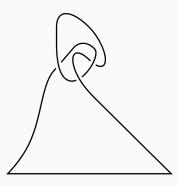


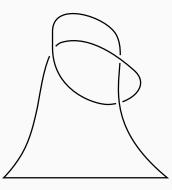
Motivation

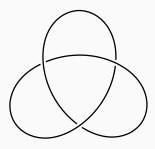
Motivation

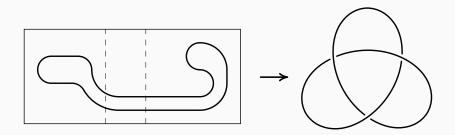












Formalization

Definition

An **origami folding** *F* is a piecewise-linear arcwise isometry $[0, 1]^2 \rightarrow \mathbb{R}^3$.

Definition

An **arcwise isometry** *F* is a map that preserves the length of curves.

Formalization

Definition

An **origami folding** *F* is a piecewise-linear arcwise isometry $[0, 1]^2 \rightarrow \mathbb{R}^3$.

Definition

An **arcwise isometry** *F* is a map that preserves the length of curves.

Definition

A crease pattern is a graph embedding $G \subset [0, 1]^2$ such that *F* is non-differentiable precisely on *G*.

Formalization

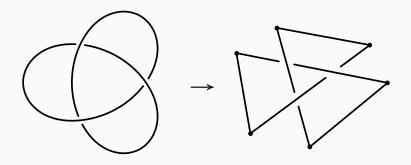
Definition

A knot *K* is an **origami knot** if there exists a piecewise-linear loop $\ell : S^1 \hookrightarrow [0,1]^2$ on the origami paper and an origami folding *F* such that $F(\ell) = K$. When this property is satisfied, we say *F* admits *K*.

Universality & Invariants

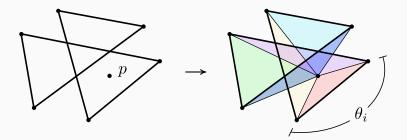
Theorem (Universality)

Theorem



Theorem

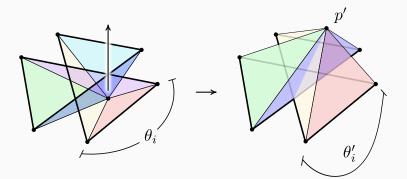
Every knot type includes an origami knot.



Pick point *p* in an enclosed region. Note $\sum \theta_i \ge 2\pi$.

Theorem

Every knot type includes an origami knot.

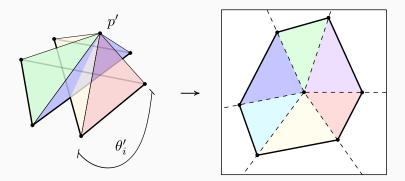


Translate *p* to *p'* s.t. $\sum \theta'_i = 2\pi$.

(Intermediate value theorem guarantees the existence of p')

Theorem

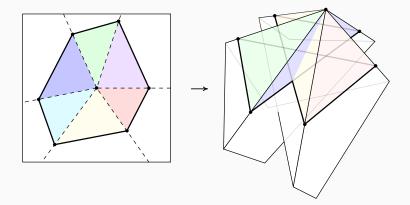
Every knot type includes an origami knot.



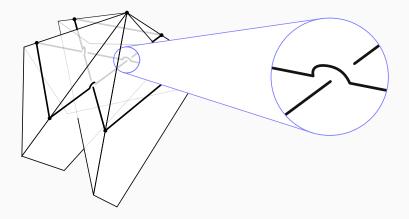
Lay out triangles on the plane.

(Always possible because they sweep out 2π . Choose mountain or valley depending on left- or right-turn.)

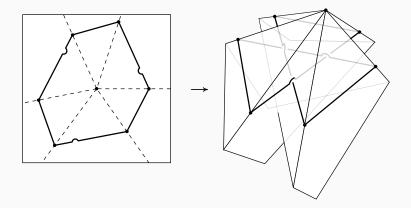
Theorem



Theorem



Theorem



Definition

The **fold number** of a knot K is

```
f(K) = \min\{ \# \text{ edges in } CP(F) : F \text{ admits } K', K' \simeq K \}
```

Definition

The **fold number** of a knot K is

```
f(K) = \min\{ \# \text{ edges in } CP(F) : F \text{ admits } K', K' \simeq K \}
```

Corollary

The fold number is bounded above by the stick diagram number.

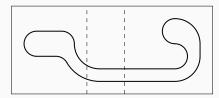
Definition

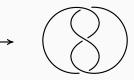
The **fold number** of a knot K is

```
f(K) = \min\{ \# \text{ edges in } CP(F) : F \text{ admits } K', K' \simeq K \}
```

Corollary

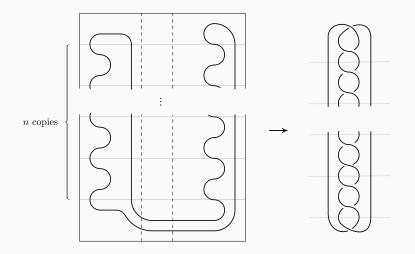
The fold number is bounded above by the stick diagram number.





Theorem

For $n \ge 0$, (2, 2n + 3)-tori knots have fold number 2.



Proper Foldings

Question

Which foldings admit nontrivial knots?

Question

Which foldings admit nontrivial knots?

Intuition:

"If I can fold it with real paper, it cannot admit a nontrivial knot."

Pre-existing definition from Justin², refined by Demaine & O'Rourke ³, but we'll pursue a more topological formalization.

 ²"Towards a Mathematical Theory of Origami" (1997)
 ³Geometric Folding Algorithms: Linkages, Origami, Polyhedra (2007)

Pre-existing definition from Justin², refined by Demaine & O'Rourke ³, but we'll pursue a more topological formalization.

Certainly injective maps are physically realizable.

 ²"Towards a Mathematical Theory of Origami" (1997)
 ³Geometric Folding Algorithms: Linkages, Origami, Polyhedra (2007)

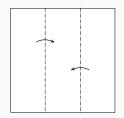
Pre-existing definition from Justin², refined by Demaine & O'Rourke ³, but we'll pursue a more topological formalization.

Certainly injective maps are physically realizable. However, not all origami is injective:

 ²"Towards a Mathematical Theory of Origami" (1997)
 ³Geometric Folding Algorithms: Linkages, Origami, Polyhedra (2007)

Pre-existing definition from Justin², refined by Demaine & O'Rourke ³, but we'll pursue a more topological formalization.

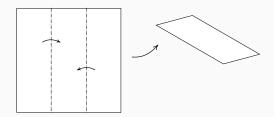
Certainly injective maps are physically realizable. However, not all origami is injective:



 ²"Towards a Mathematical Theory of Origami" (1997)
 ³Geometric Folding Algorithms: Linkages, Origami, Polyhedra (2007)

Pre-existing definition from Justin², refined by Demaine & O'Rourke ³, but we'll pursue a more topological formalization.

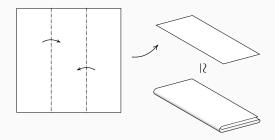
Certainly injective maps are physically realizable. However, not all origami is injective:



 ²"Towards a Mathematical Theory of Origami" (1997)
 ³Geometric Folding Algorithms: Linkages, Origami, Polyhedra (2007)

Pre-existing definition from Justin², refined by Demaine & O'Rourke ³, but we'll pursue a more topological formalization.

Certainly injective maps are physically realizable. However, not all origami is injective:



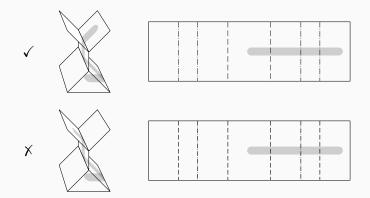
²"Towards a Mathematical Theory of Origami" (1997)
 ³Geometric Folding Algorithms: Linkages, Origami, Polyhedra (2007)

Definition (Proper Folding)

A folding *F* is **proper** if $\forall \epsilon > 0$, there exists an injective function $F' : [0, 1]^2 \rightarrow \mathbb{R}^3$ with $|F - F'| < \epsilon$ in supremum norm.

Definition (Proper Folding)

A folding *F* is **proper** if $\forall \epsilon > 0$, there exists an injective function $F' : [0, 1]^2 \rightarrow \mathbb{R}^3$ with $|F - F'| < \epsilon$ in supremum norm.



Theorem

All knots admitted by a proper folding are unknots.

Theorem

All knots admitted by a proper folding are unknots.

Proof. Let *F* be a proper folding.

Theorem

All knots admitted by a proper folding are unknots.

Proof. Let F be a proper folding.

Proper \implies F is a limit point of {injective maps $[0,1]^2 \rightarrow \mathbb{R}^3$ }

Theorem

All knots admitted by a proper folding are unknots.

Proof. Let F be a proper folding.

Proper \implies F is a limit point of { injective maps $[0,1]^2 \rightarrow \mathbb{R}^3$ }

 \implies F is a limit point of { injective PL maps $[0, 1]^2 \rightarrow \mathbb{R}^3$ }

Theorem

All knots admitted by a proper folding are unknots.

Proof. Let F be a proper folding.

Proper \implies F is a limit point of { injective maps $[0, 1]^2 \rightarrow \mathbb{R}^3$ } \implies F is a limit point of { injective PL maps $[0, 1]^2 \rightarrow \mathbb{R}^3$ }

Lemma 1

Injective PL maps $[0,1]^2 \to \mathbb{R}^3$ only admit the unknot.

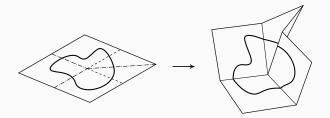
Theorem

All knots admitted by a proper folding are unknots.

Proof. Let F be a proper folding.

Proper \implies F is a limit point of { injective maps $[0,1]^2 \rightarrow \mathbb{R}^3$ } \implies F is a limit point of { injective PL maps $[0,1]^2 \rightarrow \mathbb{R}^3$ }

Lemma 1 $\label{eq:lemma}$ Injective PL maps $[0,1]^2 \to \mathbb{R}^3$ only admit the unknot.



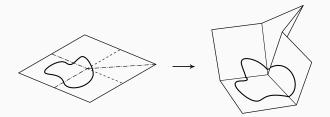
Theorem

All knots admitted by a proper folding are unknots.

Proof. Let F be a proper folding.

Proper \implies *F* is a limit point of { injective maps $[0, 1]^2 \rightarrow \mathbb{R}^3$ } \implies *F* is a limit point of { injective PL maps $[0, 1]^2 \rightarrow \mathbb{R}^3$ }

Lemma 1 $\label{eq:lemma}$ Injective PL maps $[0,1]^2 \to \mathbb{R}^3$ only admit the unknot.



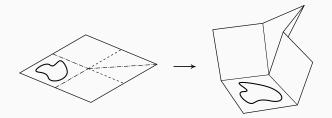
Theorem

All knots admitted by a proper folding are unknots.

Proof. Let F be a proper folding.

Proper \implies *F* is a limit point of { injective maps $[0, 1]^2 \rightarrow \mathbb{R}^3$ } \implies *F* is a limit point of { injective PL maps $[0, 1]^2 \rightarrow \mathbb{R}^3$ }

Lemma 1 $\label{eq:lemma}$ Injective PL maps $[0,1]^2 \to \mathbb{R}^3$ only admit the unknot.



Theorem

All knots admitted by a proper folding are unknots.

Proof. Let F be a proper folding.

Proper \implies F is a limit point of { injective maps $[0, 1]^2 \rightarrow \mathbb{R}^3$ } \implies F is a limit point of { injective PL maps $[0, 1]^2 \rightarrow \mathbb{R}^3$ }

Theorem

All knots admitted by a proper folding are unknots.

Proof. Let F be a proper folding.

Proper \implies F is a limit point of { injective maps $[0, 1]^2 \rightarrow \mathbb{R}^3$ }

 \implies F is a limit point of { injective PL maps $[0,1]^2 \rightarrow \mathbb{R}^3$ }

 \implies F is a limit point of

{ PL maps $[0,1]^2 \to \mathbb{R}^3$ which only admit trivial knots }

Lemma 2

The set

```
T = \{ \text{ PL maps } [0,1]^2 \to \mathbb{R}^3 \text{ which only admit trivial knots } \} is closed.
```

```
Lemma 2

The set

T = \{ PL maps [0, 1]^2 \rightarrow \mathbb{R}^3 \text{ which only admit trivial knots } \}

is closed.
```

Claim: The complement T^c is open.

```
Lemma 2

The set

T = \{ PL maps [0, 1]^2 \rightarrow \mathbb{R}^3 \text{ which only admit trivial knots } \}

is closed.
```

Claim: The complement T^c is open.

Consider $G \in T^c$ and a loop ℓ such that $G(\ell)$ is a nontrivial knot K.

```
Lemma 2

The set

T = \{ PL maps [0, 1]^2 \rightarrow \mathbb{R}^3 \text{ which only admit trivial knots } \}

is closed.
```

Claim: The complement *T*^c is open.

Consider $G \in T^c$ and a loop ℓ such that $G(\ell)$ is a nontrivial knot K. Let $\epsilon > 0$ be such that the ϵ -neighborhood of K is a tubular region.

```
Lemma 2

The set

T = \{ PL maps [0, 1]^2 \rightarrow \mathbb{R}^3 \text{ which only admit trivial knots } \}

is closed.
```

Claim: The complement *T*^c is open.

Consider $G \in T^c$ and a loop ℓ such that $G(\ell)$ is a nontrivial knot K. Let $\epsilon > 0$ be such that the ϵ -neighborhood of K is a tubular region.

Claim: All PL maps G' with $|G - G'| < \epsilon$ admit a nontrivial knot.

```
Lemma 2

The set

T = \{ PL maps [0, 1]^2 \rightarrow \mathbb{R}^3 \text{ which only admit trivial knots } \}

is closed.
```

Claim: The complement *T*^c is open.

Consider $G \in T^c$ and a loop ℓ such that $G(\ell)$ is a nontrivial knot K. Let $\epsilon > 0$ be such that the ϵ -neighborhood of K is a tubular region.

Claim: All PL maps G' with $|G - G'| < \epsilon$ admit a nontrivial knot. Consider $G'(\ell)$.

```
Lemma 2

The set

T = \{ PL maps [0, 1]^2 \rightarrow \mathbb{R}^3 \text{ which only admit trivial knots } \}

is closed.
```

Claim: The complement *T*^c is open.

Consider $G \in T^c$ and a loop ℓ such that $G(\ell)$ is a nontrivial knot K. Let $\epsilon > 0$ be such that the ϵ -neighborhood of K is a tubular region.

Claim: All PL maps G' with $|G - G'| < \epsilon$ admit a nontrivial knot.

Consider $G'(\ell)$. If $G'(\ell)$ is not injective, perturb ℓ to an ℓ' such that $G'(\ell')$ is injective.

```
Lemma 2

The set

T = \{ PL maps [0, 1]^2 \rightarrow \mathbb{R}^3 \text{ which only admit trivial knots } \}

is closed.
```

Claim: The complement *T*^c is open.

Consider $G \in T^c$ and a loop ℓ such that $G(\ell)$ is a nontrivial knot K. Let $\epsilon > 0$ be such that the ϵ -neighborhood of K is a tubular region.

Claim: All PL maps G' with $|G - G'| < \epsilon$ admit a nontrivial knot.

Consider $G'(\ell)$. If $G'(\ell)$ is not injective, perturb ℓ to an ℓ' such that $G'(\ell')$ is injective. Then $G'(\ell)$ (or $G(\ell')$) is a satellite knot with nontrivial companion K and so $G' \in T^c$.

Theorem

All knots admitted by a proper folding are unknots.

Proof. Let F be a proper folding.

Proper \implies F is a limit point of { injective maps $[0,1]^2 \rightarrow \mathbb{R}^3$ }

- \implies F is a limit point of { injective PL maps $[0,1]^2 \rightarrow \mathbb{R}^3$ }
- \implies F is a limit point of

{ PL maps $[0,1]^2 \rightarrow \mathbb{R}^3$ which only admit trivial knots }

 \implies F only admits trivial knots.

Future Directions

• Bounds: Lower bounds? Is the fold number always two?

- Bounds: Lower bounds? Is the fold number always two?
- **Specific numbers:** What other knot classes' fold numbers can be determined?

- Bounds: Lower bounds? Is the fold number always two?
- **Specific numbers:** What other knot classes' fold numbers can be determined?
- Properties: How does the fold number factor over the knot sum?

- Bounds: Lower bounds? Is the fold number always two?
- **Specific numbers:** What other knot classes' fold numbers can be determined?
- Properties: How does the fold number factor over the knot sum?

Other Questions:

- Bounds: Lower bounds? Is the fold number always two?
- **Specific numbers:** What other knot classes' fold numbers can be determined?
- Properties: How does the fold number factor over the knot sum?

Other Questions:

• Links: begin with multiple non-intersecting simple loops in the square and examine foldings which intertwine them.

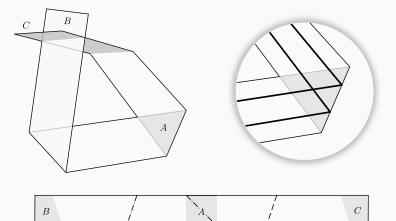
- Bounds: Lower bounds? Is the fold number always two?
- **Specific numbers:** What other knot classes' fold numbers can be determined?
- Properties: How does the fold number factor over the knot sum?

Other Questions:

- Links: begin with multiple non-intersecting simple loops in the square and examine foldings which intertwine them.
- Other topologies: Punctured disks? Higher dimensions?

Questions

Supplementary Figures



(Counterexample to the converse of Theorem 2)