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Overview

Idea: Extend the definition of origami folding to allow for
self-intersection.

We get...

• Proper foldings, which are physically realizable and never admit
knots, and

• Improper foldings, which require self-intersection of the paper,
but which can map simple loops in the paper to arbitrary knots
in the image.

• Improper foldings allow us to measure the complexity of knots
using crease patterns, as captured by the fold number.
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A quick refresher...

Definition
A knot is an embedding of the circle in R3.
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A quick refresher...

Definition
A knot is an embedding of the circle in R3.

Two knots are equivalent if one can become the other through a
continuous deformation (ambient isotopy).

If a knot is equivalent to a planar circle, we call it a trivial knot, or an
unknot.
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Motivation



Motivation

Jacques Justin conjectured1:

“The set of the Jordan curves which are the boundary of F
constitutes a link or knot equivalent to a trivial one.”

1“Towards a Mathematical Theory of Origami” (1997)
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Formalization

Definition
An origami folding F is a piecewise-linear arcwise isometry
[0, 1]2 → R3.

Definition
An arcwise isometry F is a map that preserves the length of curves.

Definition
A crease pattern is a graph embedding G ⊂ [0, 1]2 such that F is
non-differentiable precisely on G.
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Formalization

Definition
A knot K is an origami knot if there exists a piecewise-linear loop
ℓ : S1 ↪→ [0, 1]2 on the origami paper and an origami folding F such
that F(ℓ) = K. When this property is satisfied, we say F admits K.
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Universality & Invariants



Universality

Theorem (Universality)
Every knot type includes an origami knot.
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Theorem
Every knot type includes an origami knot.
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Universality

Theorem
Every knot type includes an origami knot.

Pick point p in an enclosed region. Note
∑

θi ≥ 2π.
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Universality

Theorem
Every knot type includes an origami knot.

Translate p to p′ s.t.
∑

θ′i = 2π.

(Intermediate value theorem guarantees the existence of p′)
12



Universality

Theorem
Every knot type includes an origami knot.

Lay out triangles on the plane.

(Always possible because they sweep out 2π. Choose mountain or valley
depending on left- or right-turn.) 13
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Fold Number

Definition
The fold number of a knot K is

f(K) = min
{
# edges in CP(F) : F admits K′, K′ ≃ K

}

Corollary
The fold number is bounded above by the stick diagram number.

17



Fold Number

Definition
The fold number of a knot K is

f(K) = min
{
# edges in CP(F) : F admits K′, K′ ≃ K

}
Corollary
The fold number is bounded above by the stick diagram number.

17



Fold Number

Definition
The fold number of a knot K is

f(K) = min
{
# edges in CP(F) : F admits K′, K′ ≃ K

}
Corollary
The fold number is bounded above by the stick diagram number.

17



Fold Number

Theorem
For n ≥ 0, (2, 2n+ 3)-tori knots have fold number 2.

...
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Proper Foldings



Motivation

Question
Which foldings admit nontrivial knots?

Intuition:

“If I can fold it with real paper,
it cannot admit a nontrivial knot.”

19



Motivation

Question
Which foldings admit nontrivial knots?

Intuition:

“If I can fold it with real paper,
it cannot admit a nontrivial knot.”

19



Modeling “real paper”

Pre-existing definition from Justin2, refined by Demaine & O’Rourke 3,
but we’ll pursue a more topological formalization.

Certainly injective maps are physically realizable. However, not all
origami is injective:

2“Towards a Mathematical Theory of Origami” (1997)
3Geometric Folding Algorithms: Linkages, Origami, Polyhedra (2007)
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Modeling “real paper”

Definition (Proper Folding)
A folding F is proper if ∀ϵ > 0, there exists an injective function
F′ : [0, 1]2 → R3 with |F− F′| < ϵ in supremum norm.
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Proper Foldings

Theorem
All knots admitted by a proper folding are unknots.

Proof. Let F be a proper folding.

Proper =⇒ F is a limit point of { injective maps [0, 1]2 → R3}
=⇒ F is a limit point of { injective PL maps [0, 1]2 → R3}

Lemma 1
Injective PL maps [0, 1]2 → R3 only admit the unknot.
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Proper Foldings

Lemma 2
The set

T = { PL maps [0, 1]2 → R3 which only admit trivial knots }

is closed.

Claim: The complement Tc is open.

Consider G ∈ Tc and a loop ℓ such that G(ℓ) is a nontrivial knot K. Let
ϵ > 0 be such that the ϵ-neighborhood of K is a tubular region.

Claim: All PL maps G′ with |G− G′| < ϵ admit a nontrivial knot.

Consider G′(ℓ). If G′(ℓ) is not injective, perturb ℓ to an ℓ′ such that
G′(ℓ′) is injective. Then G′(ℓ) (or G(ℓ′)) is a satellite knot with
nontrivial companion K and so G′ ∈ Tc.
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Proper Foldings

Theorem
All knots admitted by a proper folding are unknots.

Proof. Let F be a proper folding.

Proper =⇒ F is a limit point of { injective maps [0, 1]2 → R3}
=⇒ F is a limit point of { injective PL maps [0, 1]2 → R3}
=⇒ F is a limit point of

{ PL maps [0, 1]2 → R3 which only admit trivial knots }
=⇒ F only admits trivial knots.
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Future Directions

Questions about fold number:

• Bounds: Lower bounds? Is the fold number always two?
• Specific numbers: What other knot classes’ fold numbers can
be determined?

• Properties: How does the fold number factor over the knot sum?

Other Questions:

• Links: begin with multiple non-intersecting simple loops in the
square and examine foldings which intertwine them.

• Other topologies: Punctured disks? Higher dimensions?

26



Future Directions

Questions about fold number:

• Bounds: Lower bounds? Is the fold number always two?

• Specific numbers: What other knot classes’ fold numbers can
be determined?

• Properties: How does the fold number factor over the knot sum?

Other Questions:

• Links: begin with multiple non-intersecting simple loops in the
square and examine foldings which intertwine them.

• Other topologies: Punctured disks? Higher dimensions?

26



Future Directions

Questions about fold number:

• Bounds: Lower bounds? Is the fold number always two?
• Specific numbers: What other knot classes’ fold numbers can
be determined?

• Properties: How does the fold number factor over the knot sum?

Other Questions:

• Links: begin with multiple non-intersecting simple loops in the
square and examine foldings which intertwine them.

• Other topologies: Punctured disks? Higher dimensions?

26



Future Directions

Questions about fold number:

• Bounds: Lower bounds? Is the fold number always two?
• Specific numbers: What other knot classes’ fold numbers can
be determined?

• Properties: How does the fold number factor over the knot sum?

Other Questions:

• Links: begin with multiple non-intersecting simple loops in the
square and examine foldings which intertwine them.

• Other topologies: Punctured disks? Higher dimensions?

26



Future Directions

Questions about fold number:

• Bounds: Lower bounds? Is the fold number always two?
• Specific numbers: What other knot classes’ fold numbers can
be determined?

• Properties: How does the fold number factor over the knot sum?

Other Questions:

• Links: begin with multiple non-intersecting simple loops in the
square and examine foldings which intertwine them.

• Other topologies: Punctured disks? Higher dimensions?

26



Future Directions

Questions about fold number:

• Bounds: Lower bounds? Is the fold number always two?
• Specific numbers: What other knot classes’ fold numbers can
be determined?

• Properties: How does the fold number factor over the knot sum?

Other Questions:

• Links: begin with multiple non-intersecting simple loops in the
square and examine foldings which intertwine them.

• Other topologies: Punctured disks? Higher dimensions?

26



Future Directions

Questions about fold number:

• Bounds: Lower bounds? Is the fold number always two?
• Specific numbers: What other knot classes’ fold numbers can
be determined?

• Properties: How does the fold number factor over the knot sum?

Other Questions:

• Links: begin with multiple non-intersecting simple loops in the
square and examine foldings which intertwine them.

• Other topologies: Punctured disks? Higher dimensions?

26



Questions



Supplementary Figures

(Counterexample to the converse of Theorem 2)
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