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Guiding question. Can every program be parallelized? 
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Guiding question. Can every program be parallelized? 

Guiding question (formal). Suppose  has a size-  circuit ( -many 
gates). Can  be implemented by a circuit of depth  and size ?

f : {0,1}n → {0,1} s s
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Classical parallelization

Example.

f = 𝖠𝖭𝖣8
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Classical parallelization

Example.

f = 𝖠𝖭𝖣8

Guiding question. Can every program be parallelized? 

Guiding question (formal). Suppose  has a size-  circuit ( -many 
gates). Can  be implemented by a circuit of depth  and size ?

f : {0,1}n → {0,1} s s
f 𝗉𝗈𝗅𝗒𝗅𝗈𝗀(s) 𝗉𝗈𝗅𝗒(s)

size: 7, depth: 7Circuit model:  
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size: 7, depth: 3
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Question (The  problem). If  has a circuit of size , 
does  have a circuit of depth  and size ?

𝖭𝖢 ?= 𝖯 f poly(n)
f polylog(n) poly(n)

Classical parallelization
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Question (The  problem). If  has a circuit of size , 
does  have a circuit of depth  and size ?

𝖭𝖢 ?= 𝖯 f poly(n)
f polylog(n) poly(n)

Strongly expected that ; i.e., some efficient 
algorithms are inherently sequential.

𝖭𝖢 ≠ 𝖯
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decentralized auctions.
- Security seems independent of standard 

cryptographic hardness assumptions.
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fully-parallel gradient descent…)

𝖭𝖢 = 𝖯

 is difficult.𝖭𝖢 ?= 𝖯

Classical parallelization

Quantum Precomputation | QIP 2026 | slides: slote.org/qip

https://dl.acm.org/doi/abs/10.1145/3588287.3588301
https://ieeexplore.ieee.org/document/366876/
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In fact,  is required by some cryptography:𝖭𝖢 ≠ 𝖯
- Time-lock puzzles, with applications to e.g. 

decentralized auctions.
- Security seems independent of standard 

cryptographic hardness assumptions.

If , parallelomania! (Imagine 
fully-parallel gradient descent…)

𝖭𝖢 = 𝖯

 is difficult.𝖭𝖢 ?= 𝖯
- Open since the birth of circuit 

complexity [Cook 81]
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fully-parallel gradient descent…)

𝖭𝖢 = 𝖯

 is difficult.𝖭𝖢 ?= 𝖯
- Open since the birth of circuit 

complexity [Cook 81]
- Best lower bound is 

 [Håstad 93](3 − o(1))log(n)
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Question (The  problem). If  has a circuit of size , 
does  have a circuit of depth  and size ?

𝖭𝖢 ?= 𝖯 f poly(n)
f polylog(n) poly(n)

Strongly expected that ; i.e., some efficient 
algorithms are inherently sequential.

𝖭𝖢 ≠ 𝖯

In fact,  is required by some cryptography:𝖭𝖢 ≠ 𝖯
- Time-lock puzzles, with applications to e.g. 

decentralized auctions.
- Security seems independent of standard 

cryptographic hardness assumptions.

If , parallelomania! (Imagine 
fully-parallel gradient descent…)

𝖭𝖢 = 𝖯

 is difficult.𝖭𝖢 ?= 𝖯
- Open since the birth of circuit 

complexity [Cook 81]
- Best lower bound is 

 [Håstad 93](3 − o(1))log(n)

What about the 
quantum version?

Classical parallelization
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Quantum parallelization: a fundamental difference?
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Example (Classical). With  all requiring  depth, consider…f, g0, g1 : {0,1}n → {0,1} T(n)

Quantum parallelization: a fundamental difference?
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Example (Classical). With  all requiring  depth, consider…f, g0, g1 : {0,1}n → {0,1} T(n)

Quantum parallelization: a fundamental difference?
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Example (Classical). With  all requiring  depth, consider…f, g0, g1 : {0,1}n → {0,1} T(n)

T(n) T(n)+

= 2T(n)

Naive 
depth:

Quantum parallelization: a fundamental difference?
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Example (Classical). With  all requiring  depth, consider…f, g0, g1 : {0,1}n → {0,1} T(n)

T(n) T(n)+

= 2T(n)

Naive 
depth:

O(1) T(n)+ O(1)+

= T(n) + O(1)

Improved 
depth:

Quantum parallelization: a fundamental difference?

x

y

f(x)

gf(x)(y)
=

x

y
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Example (Classical). With  all requiring  depth, consider…f, g0, g1 : {0,1}n → {0,1} T(n)

T(n) T(n)+

= 2T(n)

Naive 
depth:

O(1) T(n)+ O(1)+

= T(n) + O(1)

Improved 
depth:

Upshot: a precomputation trick halved computation time

Quantum parallelization: a fundamental difference?

x

y

f(x)

gf(x)(y)
=

x

y
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Quantum parallelization: a fundamental difference?
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Quantum parallelization: a fundamental difference?

x⟩

|y⟩
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Quantum parallelization: a fundamental difference?
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|y⟩

Notation.

= (V0 0
0 V1):=
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Example (Quantum). With  -qubit unitaries requiring  depth, consider…U, V0, V1 n T(n)

T(n) T(n)+

= 2T(n)

Naive 
depth:

Quantum parallelization: a fundamental difference?

x⟩

|y⟩

Notation.

= (V0 0
0 V1):=

= ?
Apparent obstruction 

from no-cloning
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The Moore–Nilsson conjecture

Conjecture (Moore and Nilsson, 1998). The following unitary has minimum depth 
 when all 1-qubit unitaries  are not diagonal or anti-diagonal.Ω(n) U1, …, Un

C(U1, …, Un) :=
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August 17, 1998

The Moore–Nilsson conjecture

Conjecture (Moore and Nilsson, 1998). The following unitary has minimum depth 
 when all 1-qubit unitaries  are not diagonal or anti-diagonal.Ω(n) U1, …, Un

- Seemingly no classical analogue.
- Appealing candidate for “inherently sequential” unitary.

- Simple quantum circuits cannot be parallelized?
- Large coherence times necessary for quantum computing?
- Schemes for verifying device depth?

C(U1, …, Un) :=

Quantum Precomputation | QIP 2026 | slides: slote.org/qip



Quantum Precomputation | QIP 2026 | slides: slote.org/qip



The Moore–Nilsson conjecture highlights dual 
motivations for studying quantum parallelization:
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The Moore–Nilsson conjecture highlights dual 
motivations for studying quantum parallelization:

- Need for quantum parallelization techniques: can we at least 
recover quantum versions of classical parallelization ideas? 
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The Moore–Nilsson conjecture highlights dual 
motivations for studying quantum parallelization:

- Need for quantum parallelization techniques: can we at least 
recover quantum versions of classical parallelization ideas? 

- Depth lower bounds for quantum problems? Maybe it’s 
easier to prove quantum transformations are inherently 
sequential? Separate quantum-input  from ?𝖰𝖭𝖢 𝖡𝖰𝖯
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Our resultsOur results

1. Moore–Nilsson unitaries have -depth circuitsO(log n)

C(U1, …, Un) :=

Theorem. For any 1-qubit unitaries , the unitaryU1, …, Un

has an exact, ancilla-free circuit of depth .O(log n)
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Our results

2. Depth reductions for general “control-cascade circuits”
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Our results

2. Depth reductions for general “control-cascade circuits”

Our results

1. Moore–Nilsson unitaries have -depth circuitsO(log n)

Example corollary. For all -qubit unitaries , the unitary 
 has an exact circuit of depth  using  ancillae.

(2 log n) U1, …, Un

C(U1, …, Un) O(n log n) O(n3/2)

C(U1, …, Un) :=
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Our results

2. Depth reductions for general “control-cascade circuits”

Our results

1. Moore–Nilsson unitaries have -depth circuitsO(log n)

Example corollary. For all -qubit unitaries , the unitary 
 has an exact circuit of depth  using  ancillae.

(2 log n) U1, …, Un

C(U1, …, Un) O(n log n) O(n3/2)

C.f. the naive depth of 
Õ(n2)

C(U1, …, Un) :=

Theorem. For any 1-qubit unitaries , the unitaryU1, …, Un
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Quantum precomputation: some intuition

Consider a cascade 
of  -many -qubit 
controlled unitaries

m k
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Fact ([STYYZ23]). Ancilla-free circuits for general 
-qubit unitaries have worst-case depth .k Θ(4k /k)

Quantum precomputation: some intuition
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of  -many -qubit 
controlled unitaries

m k
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Fact ([STYYZ23]). Ancilla-free circuits for general 
-qubit unitaries have worst-case depth .k Θ(4k /k)

4k 4k 4k ≈ m ⋅ 4k

Quantum precomputation: some intuition

Consider a cascade 
of  -many -qubit 
controlled unitaries

m k

+ +
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Fact ([STYYZ23]). Ancilla-free circuits for general 
-qubit unitaries have worst-case depth .k Θ(4k /k)

4k 4k 4k ≈ m ⋅ 4k

Quantum precomputation: some intuition

Observation: diagonal unitaries are pretty cheap

Consider a cascade 
of  -many -qubit 
controlled unitaries

m k

+ +
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-qubit unitaries have worst-case depth .k Θ(4k /k)

4k 4k 4k ≈ m ⋅ 4k

Quantum precomputation: some intuition

Observation: diagonal unitaries are pretty cheap

Consider a cascade 
of  -many -qubit 
controlled unitaries

m k

Fact ([STYYZ23]). Ancilla-free circuits for diagonal 
-qubit unitaries have worst-case depth .k Θ(2k /k)

+ +
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Fact ([STYYZ23]). Ancilla-free circuits for general 
-qubit unitaries have worst-case depth .k Θ(4k /k)

4k 4k 4k ≈ m ⋅ 4k
Goal: make the V’s diagonal somehow

Quantum precomputation: some intuition

Observation: diagonal unitaries are pretty cheap

Consider a cascade 
of  -many -qubit 
controlled unitaries

m k

Fact ([STYYZ23]). Ancilla-free circuits for diagonal 
-qubit unitaries have worst-case depth .k Θ(2k /k)

+ +
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Quantum precomputation: some intuition

First attempt: diagonalization?

Original circuit
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Quantum precomputation: some intuition

First attempt: diagonalization?

Diagonalized via V(i) = U(i)D(i)U(i)†Original circuit

=
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Quantum precomputation: some intuition

First attempt: diagonalization?

Diagonalized via V(i) = U(i)D(i)U(i)†Original circuit

=

Rearrange

=
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Quantum precomputation: some intuition

First attempt: diagonalization?

Diagonalized via V(i) = U(i)D(i)U(i)†Original circuit

=

Rearrange

=
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4k

Quantum precomputation: some intuition

First attempt: diagonalization?

Diagonalized via V(i) = U(i)D(i)U(i)†Original circuit

=

Rearrange

=

“Precomputation”
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4k

Quantum precomputation: some intuition

m ⋅ 2k

First attempt: diagonalization?

Diagonalized via V(i) = U(i)D(i)U(i)†Original circuit

=

Rearrange

=

“Precomputation”
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4k

Quantum precomputation: some intuition

m ⋅ 2k

First attempt: diagonalization?

Diagonalized via V(i) = U(i)D(i)U(i)†Original circuit

=

Rearrange

=

“Precomputation” Improvement!
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4k

Quantum precomputation: some intuition

m ⋅ 2k

First attempt: diagonalization?

m ⋅ 4k
Problem!

Diagonalized via V(i) = U(i)D(i)U(i)†Original circuit

=

Rearrange

=

“Precomputation” Improvement!
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Quantum precomputation: a better identity
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where  a universal (fixed) unitary.Φ

Lemma (Precomputation identity). For any many-qubit 
 there are , diagonal , and  such thatU0, U1, P D R

Quantum precomputation: a better identity
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where  a universal (fixed) unitary.Φ

Lemma (Precomputation identity). For any many-qubit 
 there are , diagonal , and  such thatU0, U1, P D R

Quantum precomputation: a better identity

C.f. Naive diagonalization

=
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Quantum precomputation: applying the identity
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Quantum precomputation: applying the identity

=
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Original circuit:  depthO(m4k)

Quantum precomputation: applying the identity

=
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Original circuit:  depthO(m4k)

Quantum precomputation: applying the identity

New circuit:  depthO(4k + m2k)

=
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Original circuit:  depthO(m4k)

Quantum precomputation: applying the identity

New circuit:  depthO(4k + m2k)

=
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Example. Put . Then depths are  (naive) vs.  (using precomputation)m = n, k = log(n) O(n3) O(n2)
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Quantum precomputation: with ancillae

With ancillae:  depth 
using  ancillae 

O (2k/2 + mk)
O(m2k)

=

Original circuit:  depthO (m4k)



Quantum precomputation: with ancillae

With ancillae:  depth 
using  ancillae 

O (2k/2 + mk)
O(m2k)

=

Original circuit:  depthO (m4k)

Example corollary. For all -qubit unitaries , the unitary 
 has an exact circuit of depth  using  ancillae 

(vs. the naive depth of )

(2 log n) U1, …, Un

C(U1, …, Un) O(n log n) O(n3/2)
Õ(n2)



Quantum Precomputation | QIP 2026 | slides: slote.org/qip

Precomputation identity: proof

Goal:



Quantum Precomputation | QIP 2026 | slides: slote.org/qip

Precomputation identity: proof

Goal:



Quantum Precomputation | QIP 2026 | slides: slote.org/qip

Precomputation identity: proof

Goal:



Quantum Precomputation | QIP 2026 | slides: slote.org/qip

Cosine-Sine decomposition

Precomputation identity: proof

Goal:



Quantum Precomputation | QIP 2026 | slides: slote.org/qip

Cosine-Sine decomposition

Fact (Cosine-Sine Decomposition [e.g. PW94]). For 
any unitary , there are unitaries  s.t.U = (U11 U12

U21 U22) Si, Tj

(S1 0
0 S2) (U11 U12

U21 U22) (T1 0
0 T2) = (Σ1 Σ2

Σ2 −Σ1)
where  are the singular value matrices of  
and  respectively.

Σ1, Σ2 U11
U12

Precomputation identity: proof

Goal:

https://doi.org/10.1016/0024-3795(94)90446-4
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Precomputation identity: proof

=

□

Goal:



Our results

2. Depth reductions for general “control-cascade circuits”

Our results

1. Moore–Nilsson unitaries have -depth circuitsO(log n)

Example corollary. For all -qubit unitaries , the unitary 
 has an exact circuit of depth  using  ancillae.

(2 log n) U1, …, Un

C(U1, …, Un) O(n log n) O(n3/2)

C(U1, …, Un) :=

Theorem. For any 1-qubit unitaries , the unitaryU1, …, Un

has an exact, ancilla-free circuit of depth .O(log n)
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Bonus: in regime of 2D 
geometrically-local circuits: 

 depth,  ancillaeO( n) O(n)

Done



Our results

2. Depth reductions for general “control-cascade circuits”

Our results

1. Moore–Nilsson unitaries have -depth circuitsO(log n)

Example corollary. For all -qubit unitaries , the unitary 
 has an exact circuit of depth  using  ancillae.

(2 log n) U1, …, Un

C(U1, …, Un) O(n log n) O(n3/2)

C(U1, …, Un) :=

Theorem. For any 1-qubit unitaries , the unitaryU1, …, Un

has an exact, ancilla-free circuit of depth .O(log n)
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Bonus: in regime of 2D 
geometrically-local circuits: 

 depth,  ancillaeO( n) O(n)

Up 
Next



-many Control- ’s per blockk U

{

 different ’sm = n/k V(i)

Refuting the Moore–Nilsson conjecture
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-many Control- ’s per blockk U

{

 different ’sm = n/k V(i)

Refuting the Moore–Nilsson conjecture
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blocks

U



Lemma (Precomputation for Moore–Nilsson circuits).

There exist unitaries  on  and  qubits 
respectively so that

P, Q, R ℓ, 1, ℓ − 1

Refuting the Moore–Nilsson conjecture
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precomputation identity



Lemma (Precomputation for Moore–Nilsson circuits).

There exist unitaries  on  and  qubits 
respectively so that

P, Q, R ℓ, 1, ℓ − 1

for  diagonal and  a universal (fixed) 
unitary.

D Φ

C.f. generic precomputation identity

Refuting the Moore–Nilsson conjecture
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Step 2. Prove a better 
precomputation identity
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Definition. Let  be 
the minimum depth of .

MN(n)
C( ⃗U)
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Definition. Let  be 
the minimum depth of .

MN(n)
C( ⃗U)

4k 4kMN( n
k )MN(n) ≤ + +

{ {

Then
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Definition. Let  be 
the minimum depth of .

MN(n)
C( ⃗U)

4k 4kMN( n
k )MN(n) ≤ + +

{ {

Then

2ℓ ⋅ 4k MN( n
kℓ )MN(n) ≤ +

And after  iterations:ℓ
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Definition. Let  be 
the minimum depth of .

MN(n)
C( ⃗U)

4k 4kMN( n
k )MN(n) ≤ + +

{ {

Then

2ℓ ⋅ 4k MN( n
kℓ )MN(n) ≤ +

And after  iterations:ℓ

Put  and :ℓ = Θ(log n) k = Θ(1)

O(log n)MN(n) ≤ □
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For the Moore–Nilsson circuits ,C( ⃗U)

C.f. the general case from 
the CS decomposition

Refuting the Moore–Nilsson conjecture: improved precomputation

Under the hood: a special structure for the relevant Cosine-Sine Decomposition
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Our results

2. Depth reductions for general “control-cascade circuits”

Our results

1. Moore–Nilsson unitaries have -depth circuitsO(log n)

Example corollary. For all -qubit unitaries , the unitary 
 has an exact circuit of depth  using  ancillae.

(2 log n) U1, …, Un

C(U1, …, Un) O(n log n) O(n3/2)

C(U1, …, Un) :=

Theorem. For any 1-qubit unitaries , the unitaryU1, …, Un

has an exact, ancilla-free circuit of depth .O(log n)
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Bonus: in regime of 2D 
geometrically-local circuits: 

 depth,  ancillaeO( n) O(n)

Done

Done
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Quantum dynamic programming?

Next steps
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Beyond one qubit of control

Cosine-Sine 
decomposition 
approach already 
blocked at qutrit 
controls…

Cascades of general unitaries

Unclear how to prove 
a precomputation 
identity here…

Question for the audience: 

What circuits would you like 
to be parallelized?
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Thanks! Questions?


