

slides: slote.org/qip

Quantum precomputation: Parallelizing cascade circuits and the Moore–Nilsson conjecture is false

Joe Slote (Caltech → UW)

Joint with Adam Bene Watts, Charles R. Chen, and J. William Helton

Joint with:

Adam Bene Watts
U Calgary

Charles R. Chen
UC San Diego

J. William Helton
UC San Diego

Classical parallelization

Guiding question. Can every program be parallelized?

Classical parallelization

Guiding question. Can every program be parallelized?

Guiding question (formal). Suppose $f: \{0,1\}^n \rightarrow \{0,1\}$ has a size- s circuit (s -many gates). Can f be implemented by a circuit of depth $\text{polylog}(s)$ and size $\text{poly}(s)$?

Classical parallelization

Guiding question. Can every program be parallelized?

Guiding question (formal). Suppose $f: \{0,1\}^n \rightarrow \{0,1\}$ has a size- s circuit (s -many gates). Can f be implemented by a circuit of depth $\text{polylog}(s)$ and size $\text{poly}(s)$?

Example.

$$f = \text{AND}_8$$

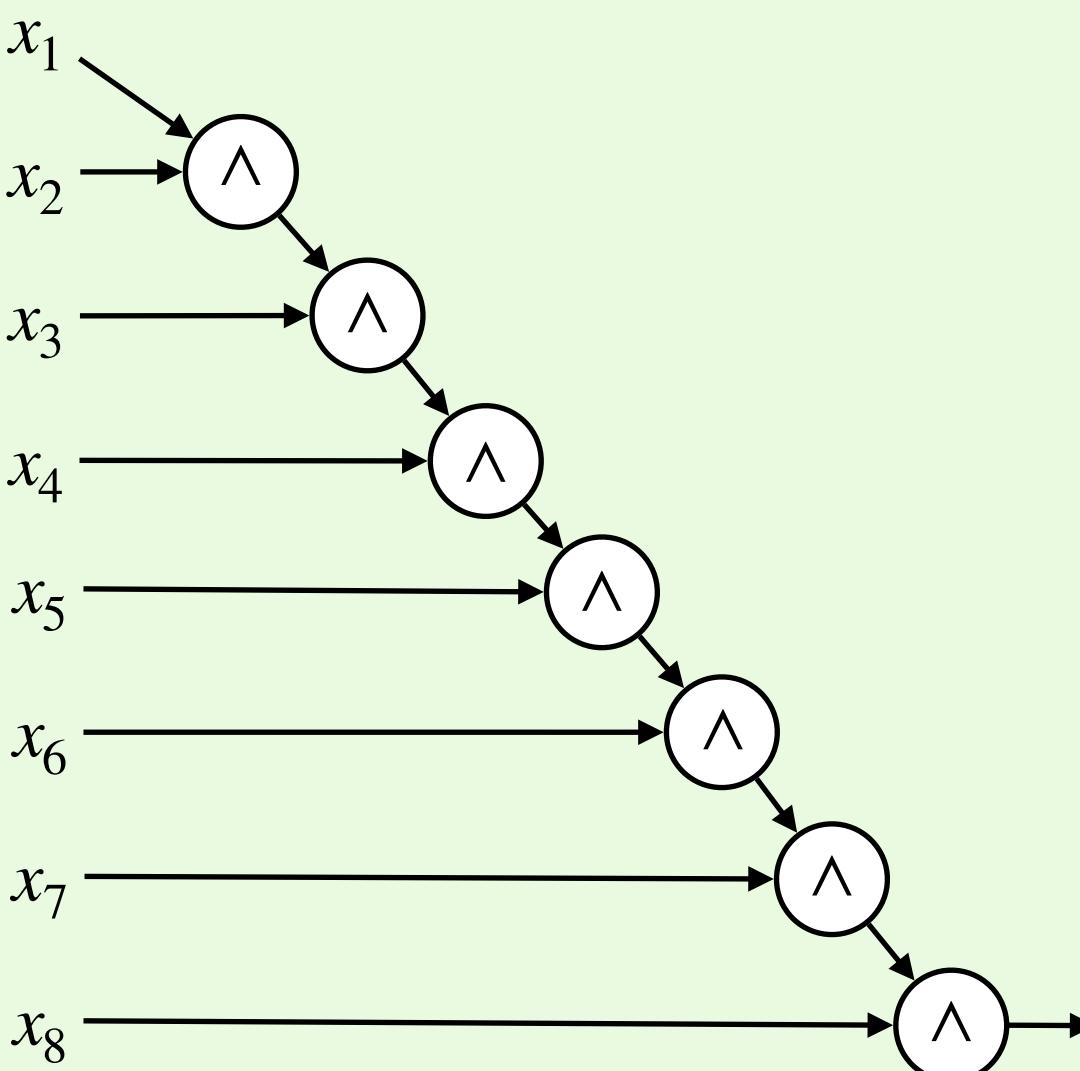
Classical parallelization

Guiding question. Can every program be parallelized?

Guiding question (formal). Suppose $f: \{0,1\}^n \rightarrow \{0,1\}$ has a size- s circuit (s -many gates). Can f be implemented by a circuit of depth $\text{polylog}(s)$ and size $\text{poly}(s)$?

Example.

$f = \text{AND}_8$



Circuit model: NC
(const. fan-in & fan-out)

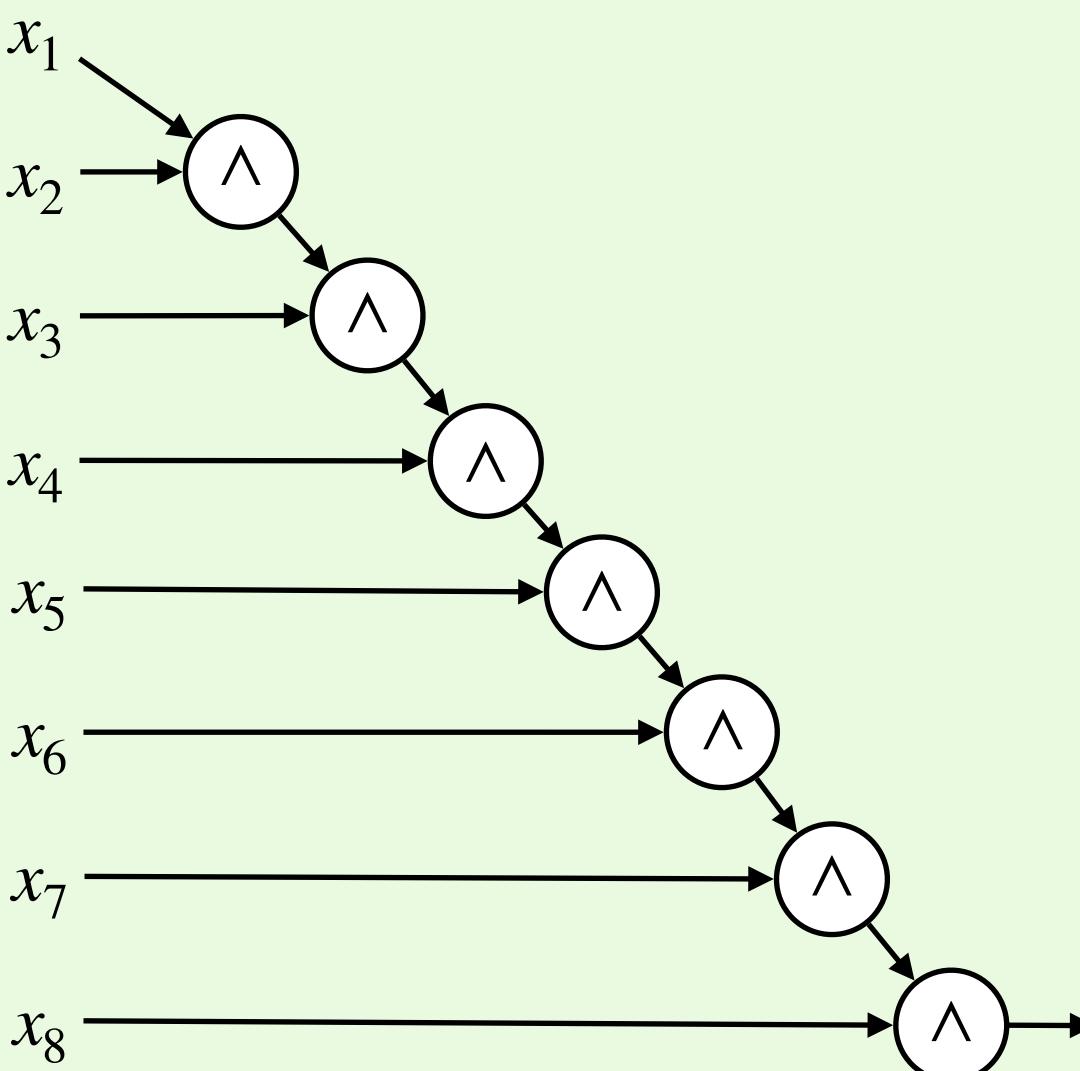
Classical parallelization

Guiding question. Can every program be parallelized?

Guiding question (formal). Suppose $f: \{0,1\}^n \rightarrow \{0,1\}$ has a size- s circuit (s -many gates). Can f be implemented by a circuit of depth $\text{polylog}(s)$ and size $\text{poly}(s)$?

Example.

$f = \text{AND}_8$



Circuit model: NC
(const. fan-in & fan-out)

size: 7, depth: 7

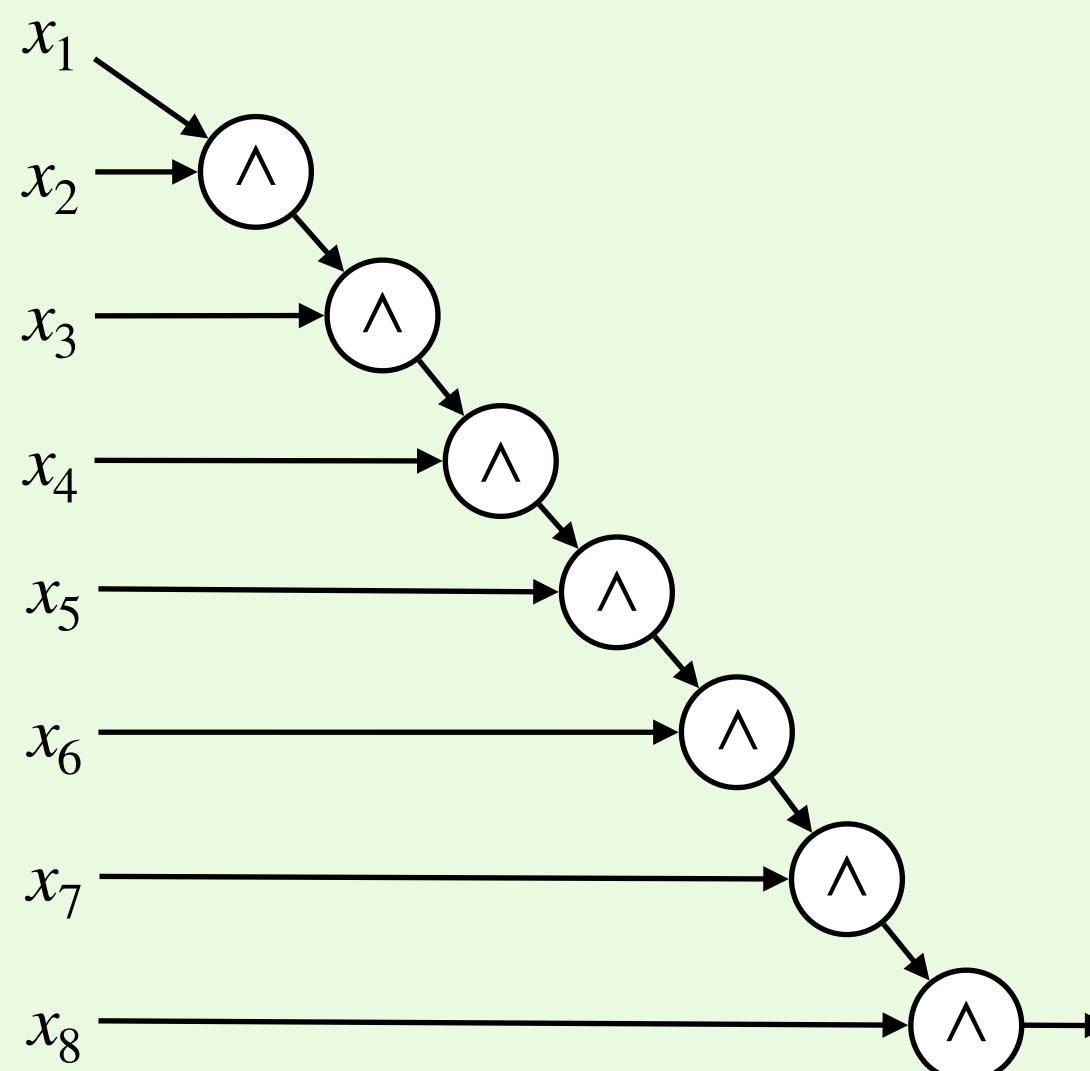
Classical parallelization

Guiding question. Can every program be parallelized?

Guiding question (formal). Suppose $f: \{0,1\}^n \rightarrow \{0,1\}$ has a size- s circuit (s -many gates). Can f be implemented by a circuit of depth $\text{polylog}(s)$ and size $\text{poly}(s)$?

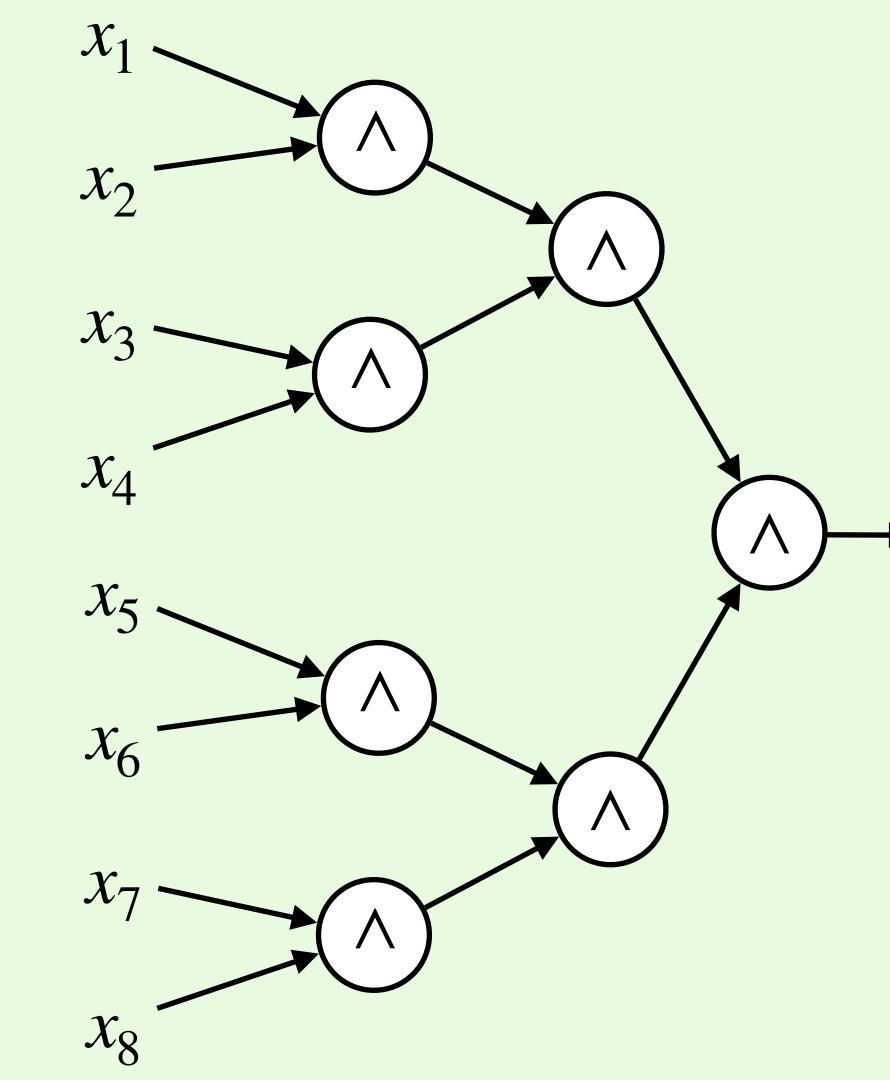
Example.

$$f = \text{AND}_8$$



Circuit model: NC
(const. fan-in & fan-out)

size: 7, depth: 7



size: 7, depth: 3

Classical parallelization

Classical parallelization

Question (The $\mathbf{NC} \stackrel{?}{=} \mathbf{P}$ problem). If f has a circuit of size $\text{poly}(n)$, does f have a circuit of depth $\text{polylog}(n)$ and size $\text{poly}(n)$?

Classical parallelization

Question (The $\mathbf{NC} \stackrel{?}{=} \mathbf{P}$ problem). If f has a circuit of size $\text{poly}(n)$, does f have a circuit of depth $\text{polylog}(n)$ and size $\text{poly}(n)$?

Strongly expected that $\mathbf{NC} \neq \mathbf{P}$; *i.e.*, some efficient algorithms are *inherently sequential*.

Classical parallelization

Question (The $\mathbf{NC} \stackrel{?}{=} \mathbf{P}$ problem). If f has a circuit of size $\text{poly}(n)$, does f have a circuit of depth $\text{polylog}(n)$ and size $\text{poly}(n)$?

Strongly expected that $\mathbf{NC} \neq \mathbf{P}$; *i.e.*, some efficient algorithms are *inherently sequential*.

Classical parallelization

Question (The $\mathbf{NC} \stackrel{?}{=} \mathbf{P}$ problem). If f has a circuit of size $\text{poly}(n)$, does f have a circuit of depth $\text{polylog}(n)$ and size $\text{poly}(n)$?

Strongly expected that $\mathbf{NC} \neq \mathbf{P}$; *i.e.*, some efficient algorithms are *inherently sequential*.

In fact, $\mathbf{NC} \neq \mathbf{P}$ is *required* by some cryptography:

Classical parallelization

Question (The $\mathbf{NC} \stackrel{?}{=} \mathbf{P}$ problem). If f has a circuit of size $\text{poly}(n)$, does f have a circuit of depth $\text{polylog}(n)$ and size $\text{poly}(n)$?

Strongly expected that $\mathbf{NC} \neq \mathbf{P}$; *i.e.*, some efficient algorithms are *inherently sequential*.

In fact, $\mathbf{NC} \neq \mathbf{P}$ is *required* by some cryptography:

- Time-lock puzzles, with applications to *e.g.* decentralized auctions.

Classical parallelization

Question (The $\mathbf{NC} \stackrel{?}{=} \mathbf{P}$ problem). If f has a circuit of size $\text{poly}(n)$, does f have a circuit of depth $\text{polylog}(n)$ and size $\text{poly}(n)$?

Strongly expected that $\mathbf{NC} \neq \mathbf{P}$; *i.e.*, some efficient algorithms are *inherently sequential*.

In fact, $\mathbf{NC} \neq \mathbf{P}$ is *required* by some cryptography:

- Time-lock puzzles, with applications to *e.g.* decentralized auctions.
- Security seems independent of standard cryptographic hardness assumptions.

Classical parallelization

Question (The $\mathbf{NC} \stackrel{?}{=} \mathbf{P}$ problem). If f has a circuit of size $\text{poly}(n)$, does f have a circuit of depth $\text{polylog}(n)$ and size $\text{poly}(n)$?

Strongly expected that $\mathbf{NC} \neq \mathbf{P}$; *i.e.*, some efficient algorithms are *inherently sequential*.

If $\mathbf{NC} = \mathbf{P}$, parallelomania! (Imagine fully-parallel gradient descent...)

In fact, $\mathbf{NC} \neq \mathbf{P}$ is *required* by some cryptography:

- Time-lock puzzles, with applications to *e.g.* decentralized auctions.
- Security seems independent of standard cryptographic hardness assumptions.

Classical parallelization

Question (The $\mathbf{NC} \stackrel{?}{=} \mathbf{P}$ problem). If f has a circuit of size $\text{poly}(n)$, does f have a circuit of depth $\text{polylog}(n)$ and size $\text{poly}(n)$?

Strongly expected that $\mathbf{NC} \neq \mathbf{P}$; *i.e.*, some efficient algorithms are *inherently sequential*.

If $\mathbf{NC} = \mathbf{P}$, parallelomania! (Imagine fully-parallel gradient descent...)

In fact, $\mathbf{NC} \neq \mathbf{P}$ is *required* by some cryptography:

- Time-lock puzzles, with applications to *e.g.* decentralized auctions.
- Security seems independent of standard cryptographic hardness assumptions.

Classical parallelization

Question (The $\mathbf{NC} \stackrel{?}{=} \mathbf{P}$ problem). If f has a circuit of size $\text{poly}(n)$, does f have a circuit of depth $\text{polylog}(n)$ and size $\text{poly}(n)$?

Strongly expected that $\mathbf{NC} \neq \mathbf{P}$; *i.e.*, some efficient algorithms are *inherently sequential*.

If $\mathbf{NC} = \mathbf{P}$, parallelomania! (Imagine fully-parallel gradient descent...)

In fact, $\mathbf{NC} \neq \mathbf{P}$ is *required* by some cryptography:

$\mathbf{NC} \stackrel{?}{=} \mathbf{P}$ is difficult.

- Time-lock puzzles, with applications to *e.g.* decentralized auctions.
- Security seems independent of standard cryptographic hardness assumptions.

Classical parallelization

Question (The $\mathbf{NC} \stackrel{?}{=} \mathbf{P}$ problem). If f has a circuit of size $\text{poly}(n)$, does f have a circuit of depth $\text{polylog}(n)$ and size $\text{poly}(n)$?

Strongly expected that $\mathbf{NC} \neq \mathbf{P}$; *i.e.*, some efficient algorithms are *inherently sequential*.

In fact, $\mathbf{NC} \neq \mathbf{P}$ is *required* by some cryptography:

- Time-lock puzzles, with applications to *e.g.* decentralized auctions.
- Security seems independent of standard cryptographic hardness assumptions.

If $\mathbf{NC} = \mathbf{P}$, parallelomania! (Imagine fully-parallel gradient descent...)

$\mathbf{NC} \stackrel{?}{=} \mathbf{P}$ is difficult.

- Open since the birth of circuit complexity [[Cook 81](#)]

Classical parallelization

Question (The $\mathbf{NC} \stackrel{?}{=} \mathbf{P}$ problem). If f has a circuit of size $\text{poly}(n)$, does f have a circuit of depth $\text{polylog}(n)$ and size $\text{poly}(n)$?

Strongly expected that $\mathbf{NC} \neq \mathbf{P}$; *i.e.*, some efficient algorithms are *inherently sequential*.

In fact, $\mathbf{NC} \neq \mathbf{P}$ is *required* by some cryptography:

- Time-lock puzzles, with applications to *e.g.* decentralized auctions.
- Security seems independent of standard cryptographic hardness assumptions.

If $\mathbf{NC} = \mathbf{P}$, parallelomania! (Imagine fully-parallel gradient descent...)

$\mathbf{NC} \stackrel{?}{=} \mathbf{P}$ is difficult.

- Open since the birth of circuit complexity [[Cook 81](#)]
- Best lower bound is $(3 - o(1))\log(n)$ [[Håstad 93](#)]

Classical parallelization

Question (The $\mathbf{NC} \stackrel{?}{=} \mathbf{P}$ problem). If f has a circuit of size $\text{poly}(n)$, does f have a circuit of depth $\text{polylog}(n)$ and size $\text{poly}(n)$?

Strongly expected that $\mathbf{NC} \neq \mathbf{P}$; *i.e.*, some efficient algorithms are *inherently sequential*.

In fact, $\mathbf{NC} \neq \mathbf{P}$ is *required* by some cryptography:

- Time-lock puzzles, with applications to *e.g.* decentralized auctions.
- Security seems independent of standard cryptographic hardness assumptions.

If $\mathbf{NC} = \mathbf{P}$, parallelomania! (Imagine fully-parallel gradient descent...)

$\mathbf{NC} \stackrel{?}{=} \mathbf{P}$ is difficult.

- Open since the birth of circuit complexity [[Cook 81](#)]
- Best lower bound is $(3 - o(1))\log(n)$ [[Håstad 93](#)]

What about the quantum version?

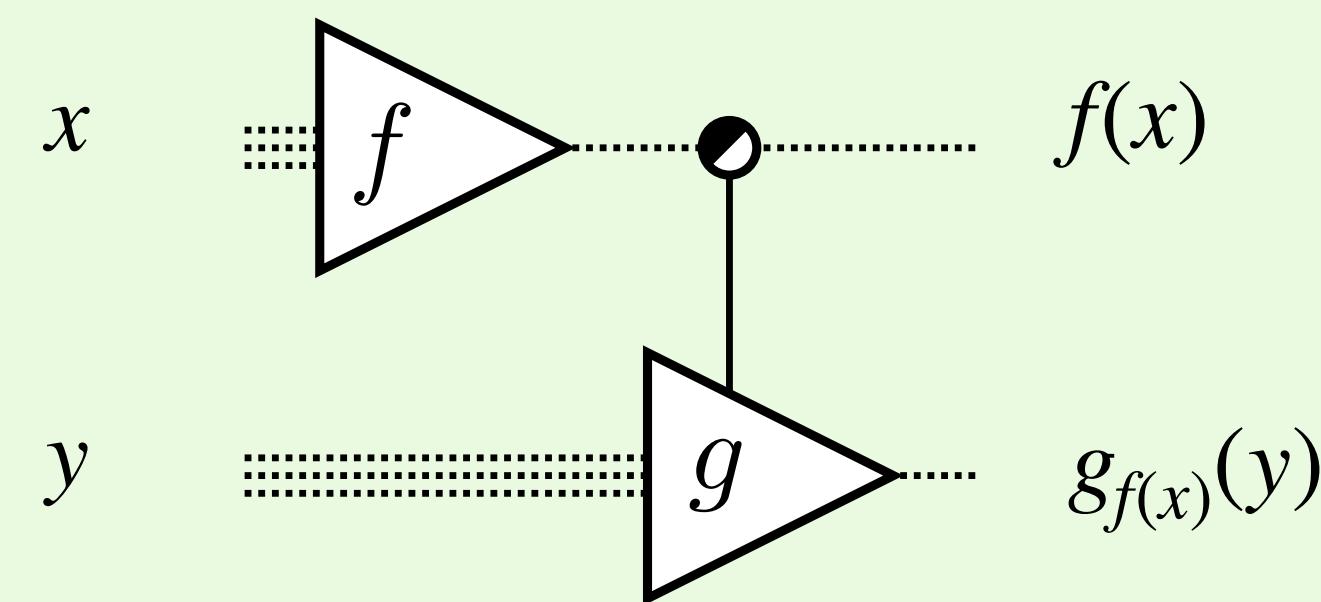
Quantum parallelization: a fundamental difference?

Quantum parallelization: a fundamental difference?

Example (Classical). With $f, g_0, g_1 : \{0,1\}^n \rightarrow \{0,1\}$ all requiring $T(n)$ depth, consider...

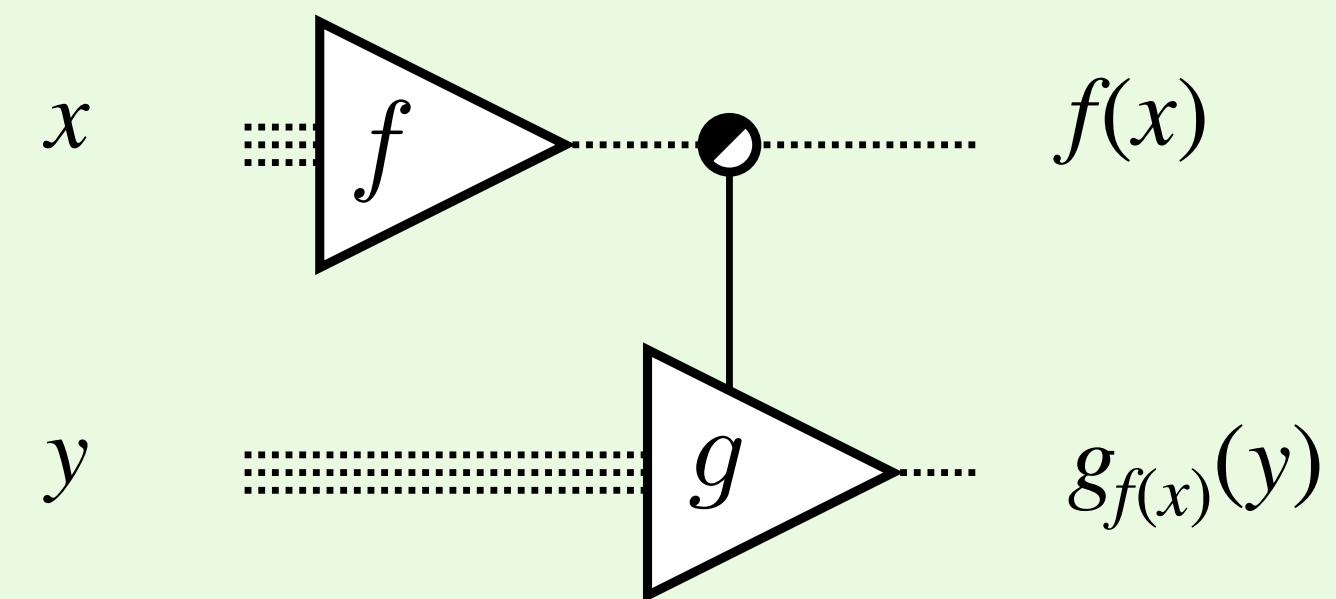
Quantum parallelization: a fundamental difference?

Example (Classical). With $f, g_0, g_1 : \{0,1\}^n \rightarrow \{0,1\}$ all requiring $T(n)$ depth, consider...



Quantum parallelization: a fundamental difference?

Example (Classical). With $f, g_0, g_1 : \{0,1\}^n \rightarrow \{0,1\}$ all requiring $T(n)$ depth, consider...

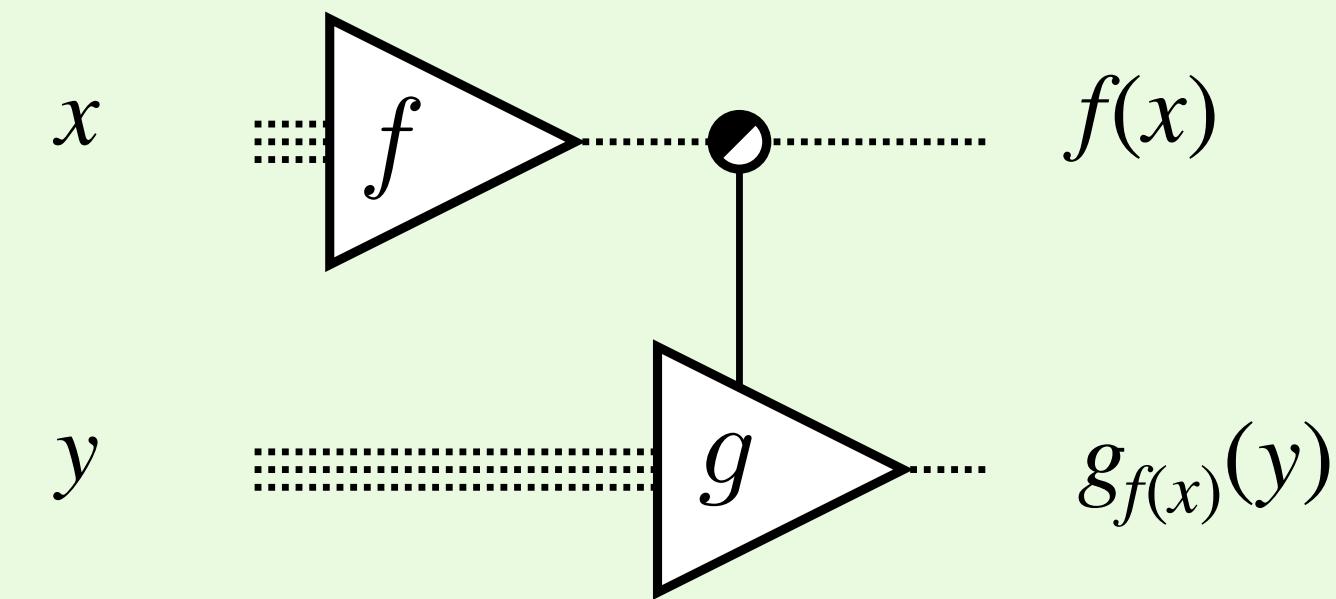


Naive depth:

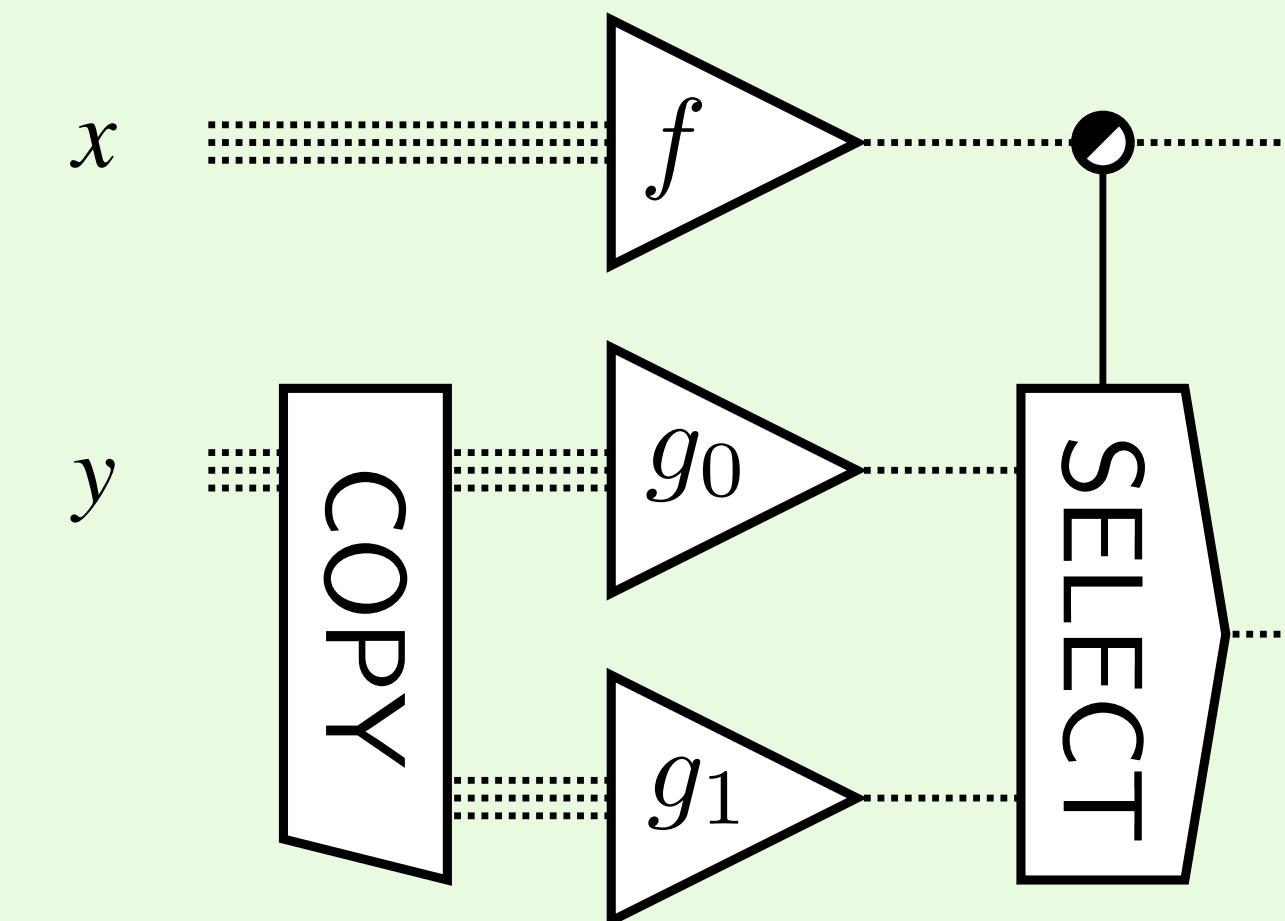
$$\begin{aligned} T(n) + T(n) \\ = 2T(n) \end{aligned}$$

Quantum parallelization: a fundamental difference?

Example (Classical). With $f, g_0, g_1 : \{0,1\}^n \rightarrow \{0,1\}$ all requiring $T(n)$ depth, consider...



=

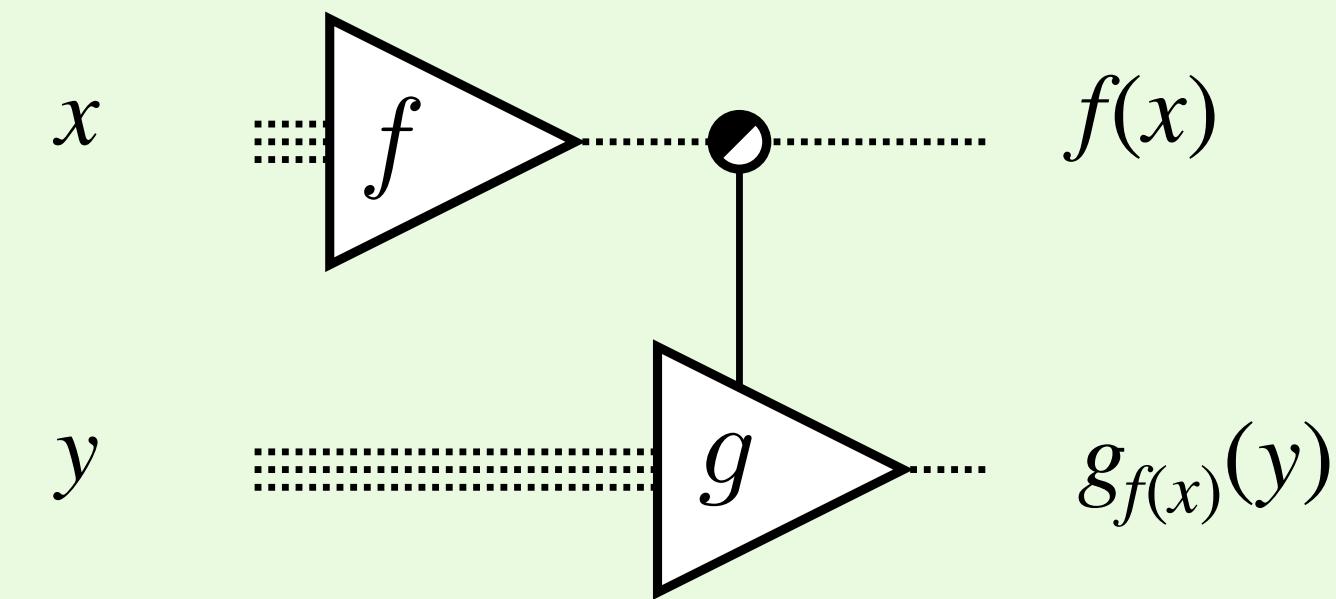


Naive
depth:

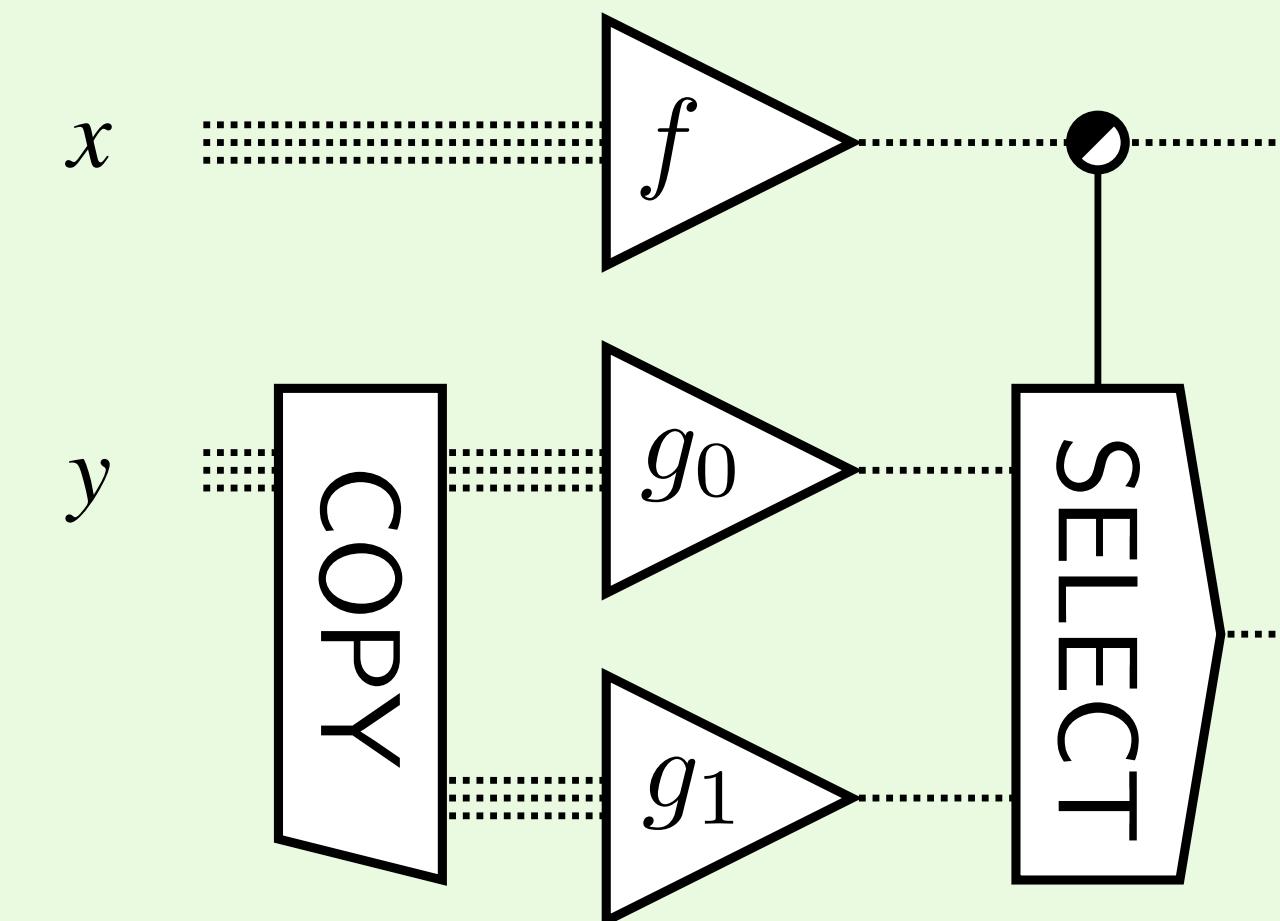
$$\begin{aligned} T(n) + T(n) \\ = 2T(n) \end{aligned}$$

Quantum parallelization: a fundamental difference?

Example (Classical). With $f, g_0, g_1 : \{0,1\}^n \rightarrow \{0,1\}$ all requiring $T(n)$ depth, consider...



=



Naive
depth:

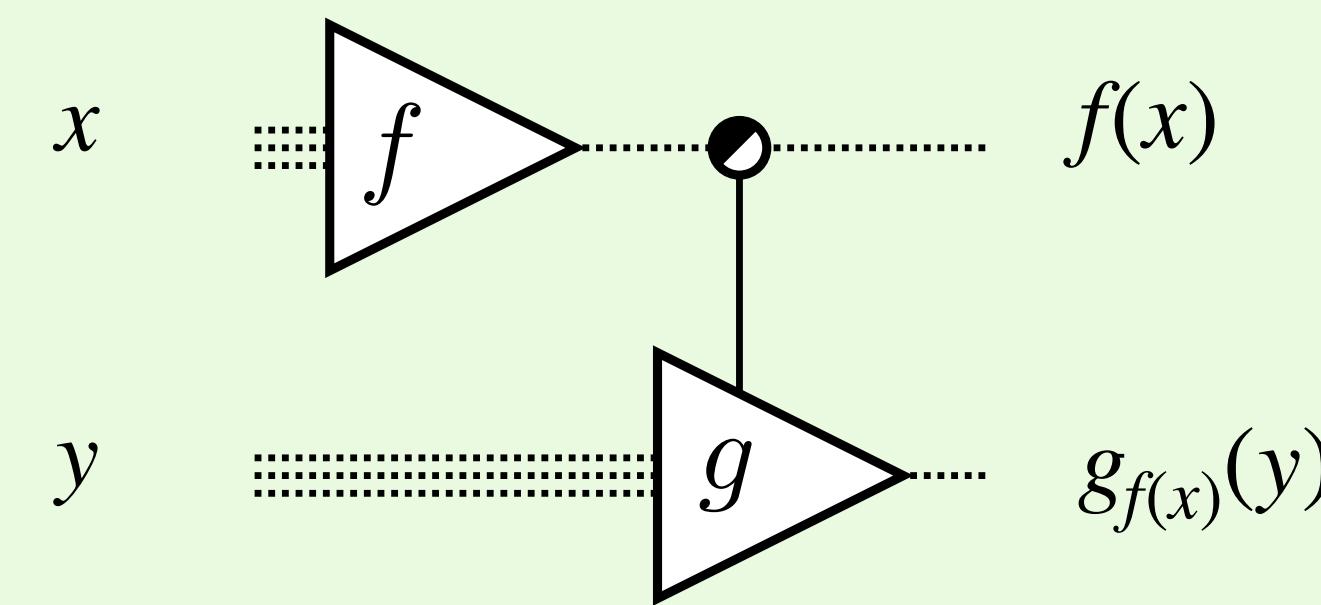
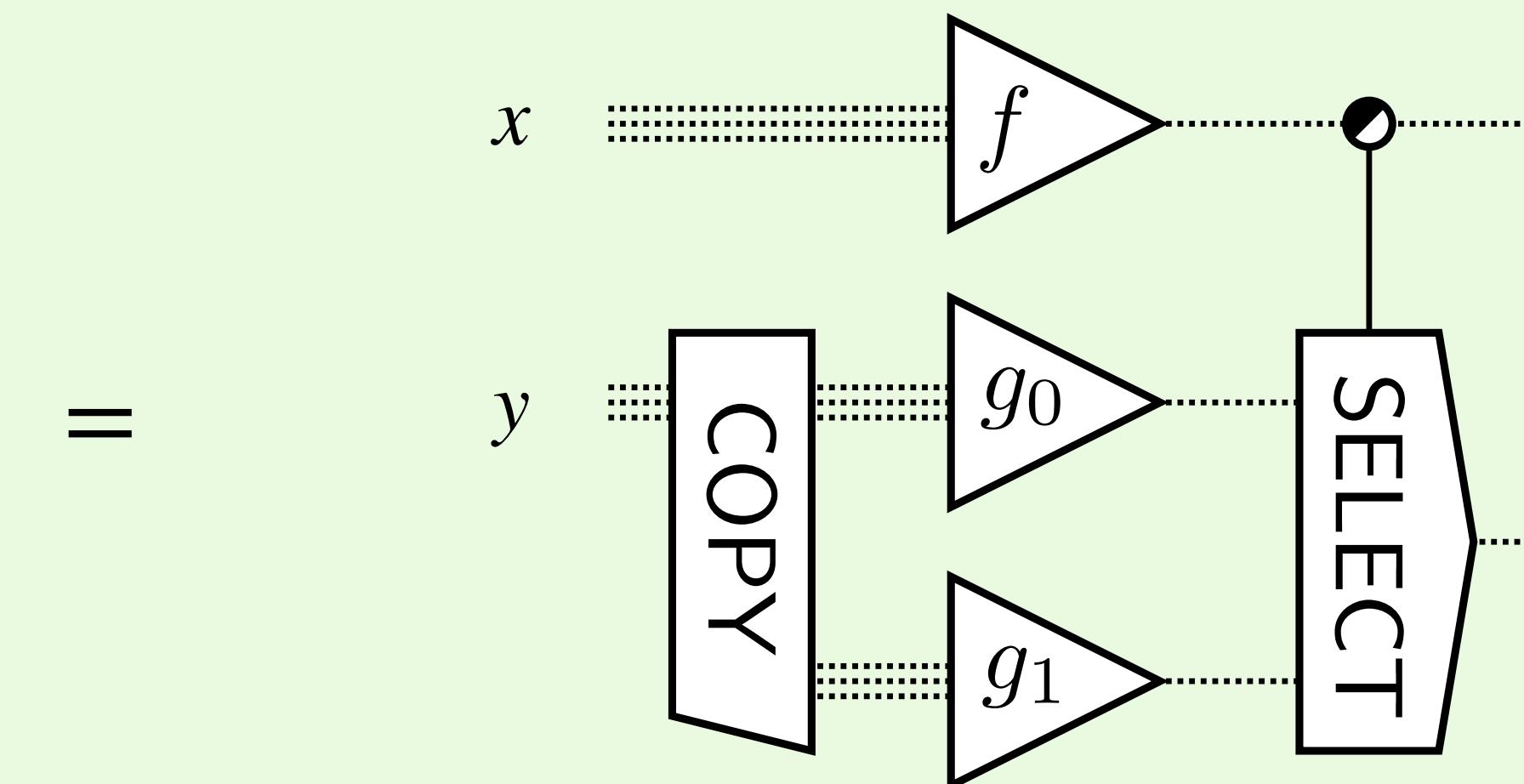
$$\begin{aligned} T(n) + T(n) \\ = 2T(n) \end{aligned}$$

Improved
depth:

$$\begin{aligned} O(1) + T(n) + O(1) \\ = T(n) + O(1) \end{aligned}$$

Quantum parallelization: a fundamental difference?

Example (Classical). With $f, g_0, g_1 : \{0,1\}^n \rightarrow \{0,1\}$ all requiring $T(n)$ depth, consider...



$$\begin{aligned} \text{Naive} & \quad T(n) + T(n) \\ \text{depth:} & \quad = 2T(n) \end{aligned}$$

$$\begin{aligned} \text{Improved} & \quad O(1) + T(n) + O(1) \\ \text{depth:} & \quad = T(n) + O(1) \end{aligned}$$

Upshot: a precomputation trick halved computation time

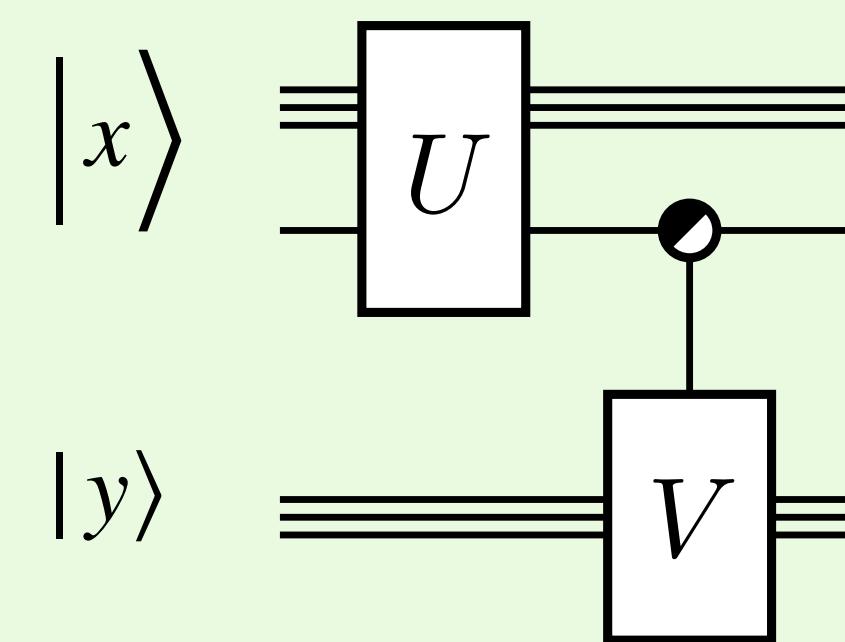
Quantum parallelization: a fundamental difference?

Quantum parallelization: a fundamental difference?

Example (Quantum). With U, V_0, V_1 n -qubit unitaries requiring $T(n)$ depth, consider...

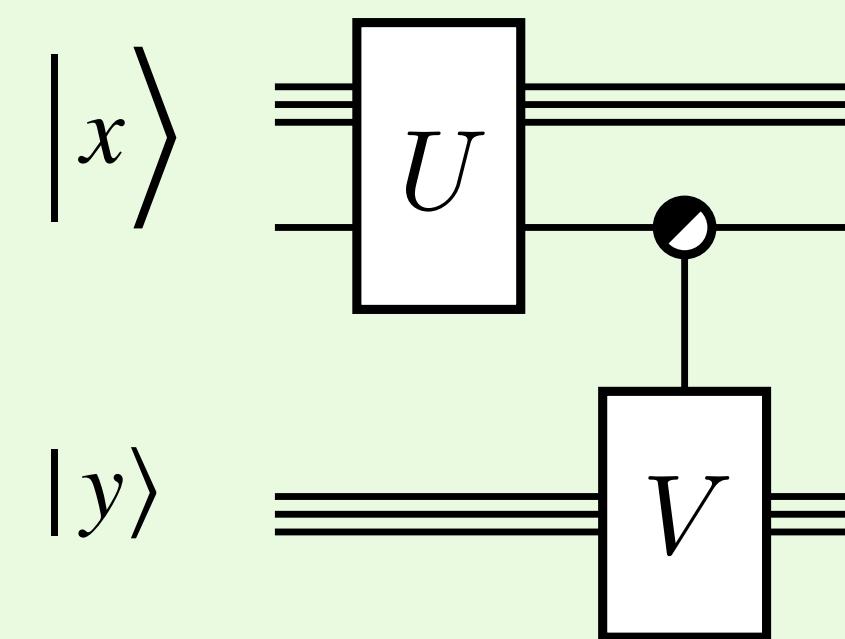
Quantum parallelization: a fundamental difference?

Example (Quantum). With U, V_0, V_1 n -qubit unitaries requiring $T(n)$ depth, consider...



Quantum parallelization: a fundamental difference?

Example (Quantum). With U, V_0, V_1 n -qubit unitaries requiring $T(n)$ depth, consider...

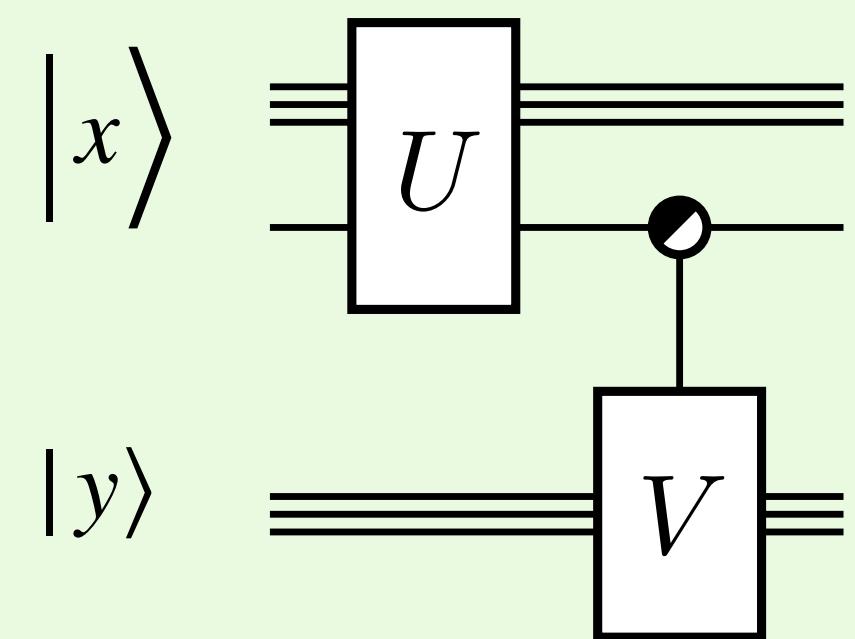


Notation.

$$\begin{array}{c} \text{---} \\ |V| \\ \text{---} \end{array} := \begin{array}{c} \text{---} \\ |V_0| \\ \text{---} \end{array} \begin{array}{c} \text{---} \\ |V_1| \\ \text{---} \end{array} = \begin{pmatrix} V_0 & 0 \\ 0 & V_1 \end{pmatrix}$$

Quantum parallelization: a fundamental difference?

Example (Quantum). With U, V_0, V_1 n -qubit unitaries requiring $T(n)$ depth, consider...



Naive depth:

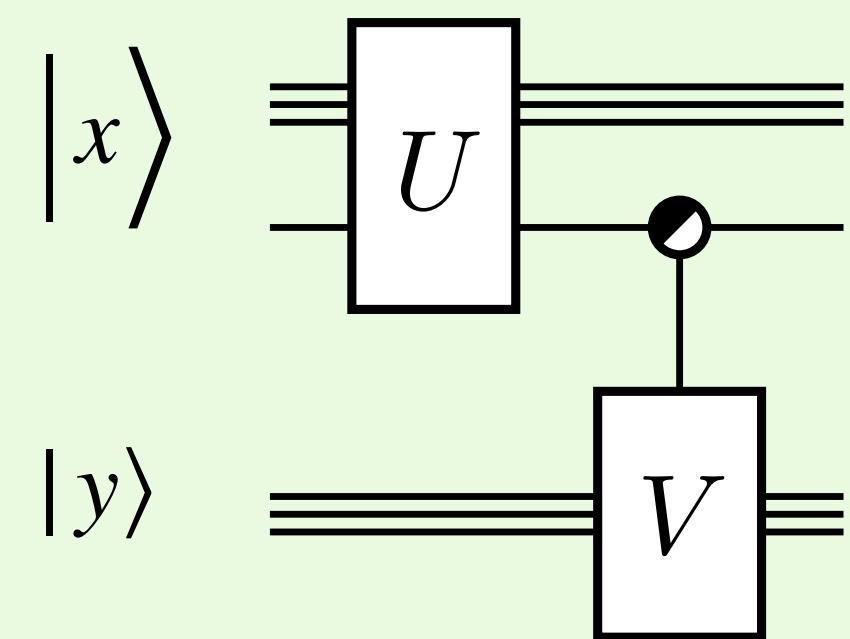
$$\begin{aligned} T(n) + T(n) \\ = 2T(n) \end{aligned}$$

Notation.

$$\begin{array}{c} \text{---} \\ |V| \\ \text{---} \end{array} := \begin{array}{c} \text{---} \\ |V_0| \\ \text{---} \end{array} \begin{array}{c} \text{---} \\ |V_1| \\ \text{---} \end{array} = \begin{pmatrix} V_0 & 0 \\ 0 & V_1 \end{pmatrix}$$

Quantum parallelization: a fundamental difference?

Example (Quantum). With U, V_0, V_1 n -qubit unitaries requiring $T(n)$ depth, consider...



=

?

Naive
depth:

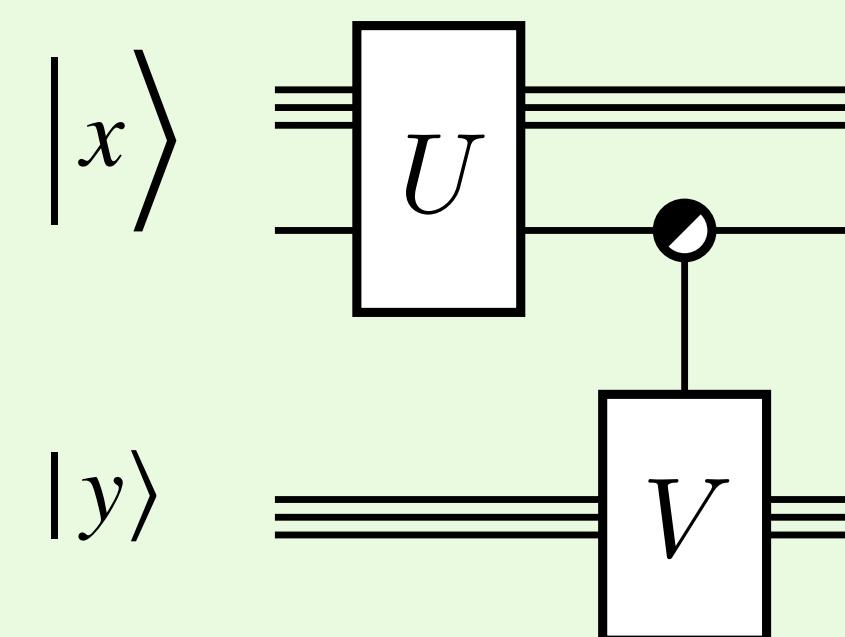
$$T(n) + T(n) = 2T(n)$$

Notation.

$$\begin{array}{c} \text{---} \\ |V| \\ \text{---} \end{array} := \begin{array}{c} \text{---} \\ |V_0| \\ \text{---} \end{array} \begin{array}{c} \text{---} \\ |V_1| \\ \text{---} \end{array} = \begin{pmatrix} V_0 & 0 \\ 0 & V_1 \end{pmatrix}$$

Quantum parallelization: a fundamental difference?

Example (Quantum). With U, V_0, V_1 n -qubit unitaries requiring $T(n)$ depth, consider...



=

?

Apparent obstruction
from no-cloning

Naive depth:

$$T(n) + T(n) = 2T(n)$$

Notation.

$$\begin{array}{c} \text{---} \\ |V| \\ \text{---} \end{array} := \begin{array}{c} \text{---} \\ |V_0| \\ \text{---} \end{array} \begin{array}{c} \text{---} \\ |V_1| \\ \text{---} \end{array} = \begin{pmatrix} V_0 & 0 \\ 0 & V_1 \end{pmatrix}$$

The Moore–Nilsson conjecture

Parallel Quantum Computation and Quantum Codes

August 17, 1998

Cristopher Moore¹ and Martin Nilsson²

¹ Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501
moore@santafe.edu

² Chalmers Tekniska Högskola and University of Göteborg, Göteborg, Sweden
martin@fy.chalmers.se

Abstract. We propose a definition of **QNC**, the quantum analog of the efficient parallel class **NC**. We exhibit several useful gadgets and prove that various classes of circuits can be parallelized to logarithmic depth, including circuits for encoding and decoding standard quantum error-correcting codes, or more generally any circuit consisting of controlled-not gates, controlled π -shifts, and Hadamard gates. Finally, while we note the Quantum Fourier Transform can be parallelized to linear depth, we conjecture that an even simpler ‘staircase’ circuit cannot be parallelized to less than linear depth, and might be used to prove that **QNC** < **QP**.

The Moore–Nilsson conjecture

Parallel Quantum Computation and Quantum Codes

August 17, 1998

Cristopher Moore¹ and Martin Nilsson²

¹ Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501

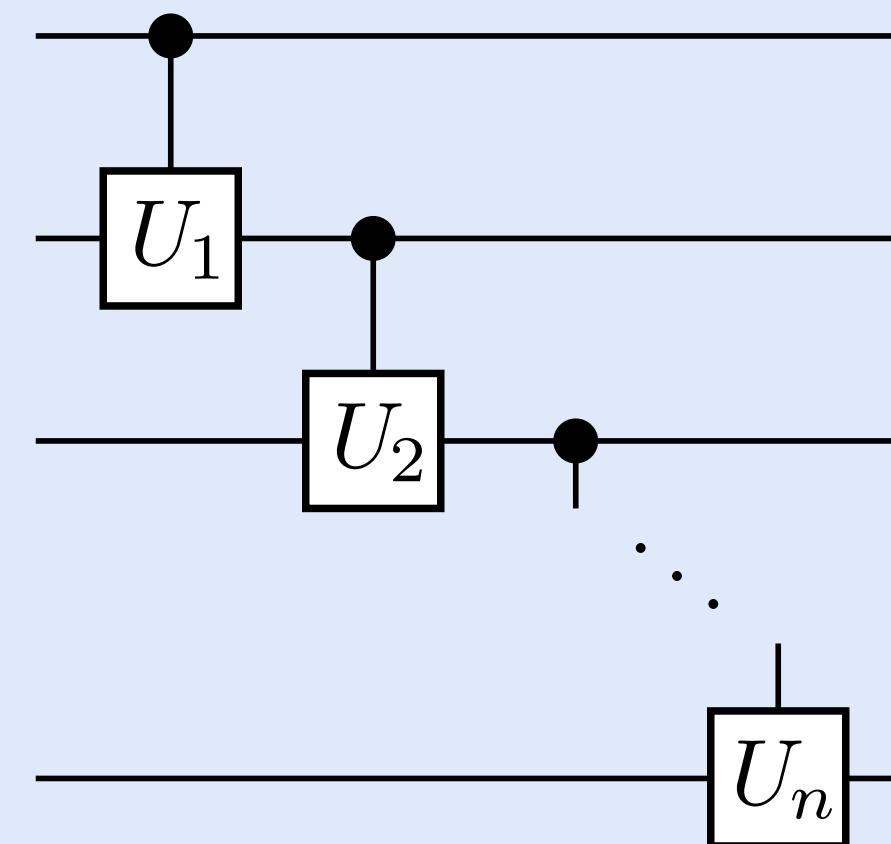
moore@santafe.edu

² Chalmers Tekniska Högskola and University of Gothenburg

martin@fy.chalmers.se

Abstract. We propose a definition of **QNC** as the class of quantum circuits that are efficiently parallelizable. We exhibit several classes of circuits that are in **QNC**, including circuits for encoding and decoding error-correcting codes, or more generally any circuit that does not use not gates, controlled π -shifts, and Hadamard gates. We also show that the Quantum Fourier Transform can be parallelized. We conjecture that an even simpler ‘staircase’ circuit can be parallelized to less than linear depth, and might be used

$$C(U_1, \dots, U_n) :=$$



The Moore–Nilsson conjecture

Parallel Quantum Computation and Quantum Codes

August 17, 1998

Cristopher Moore¹ and Martin Nilsson²

¹ Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501
moore@santafe.edu

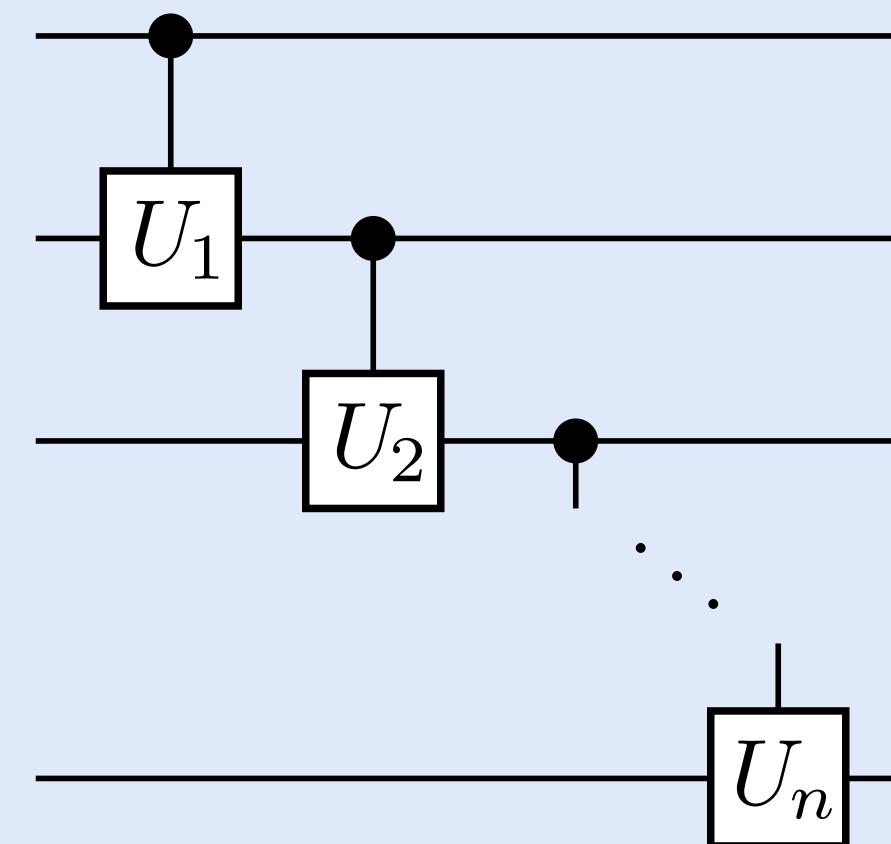
² Chalmers Tekniska Högskola and University of Gothenburg, martin@fy.chalmers.se

Abstract. We propose a definition of **QNC** efficient parallel class **NC**. We exhibit several that various classes of circuits can be parallel, including circuits for encoding and decoding correcting codes, or more generally any circuit not gates, controlled π -shifts, and Hadamard. the Quantum Fourier Transform can be parallelized. We also conjecture that an even simpler ‘staircase’ circuit can be parallelized to less than linear depth, and might be used

- Seemingly no classical analogue

Conjecture (Moore and Nilsson, 1998). The following unitary has minimum depth $\Omega(n)$ when all 1-qubit unitaries U_1, \dots, U_n are not diagonal or anti-diagonal.

$$C(U_1, \dots, U_n) :=$$



The Moore–Nilsson conjecture

Parallel Quantum Computation and Quantum Codes

August 17, 1998

Cristopher Moore¹ and Martin Nilsson²

¹ Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501

moore@santafe.edu

² Chalmers Tekniska Högskola and University of

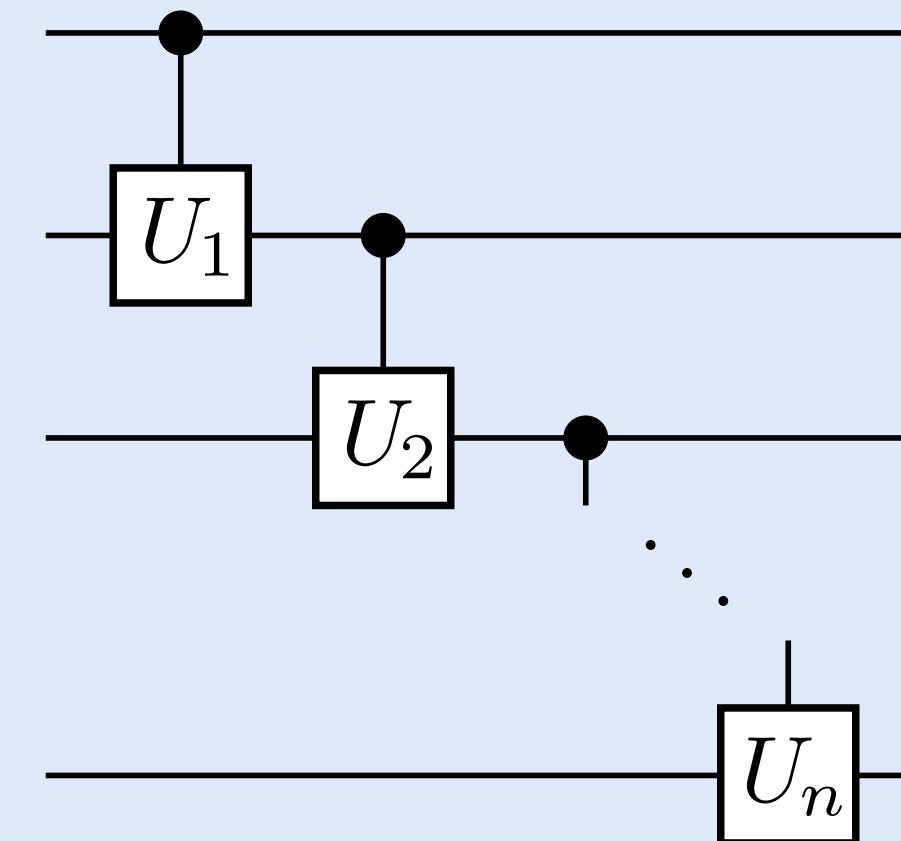
martin@fy.chalmers

- Seemingly no classical analogue.
- Appealing candidate for “inherently sequential” unitary.

Conjecture (Moore and Nilsson, 1998). The following unitary has minimum depth $\Omega(n)$ when all 1-qubit unitaries U_1, \dots, U_n are not diagonal or anti-diagonal.

Abstract. We propose a definition of **QNC** efficient parallel class **NC**. We exhibit several that various classes of circuits can be parallel, including circuits for encoding and decoding correcting codes, or more generally any circuit not gates, controlled π -shifts, and Hadamard. the Quantum Fourier Transform can be parallel, conjecture that an even simpler ‘staircase’ circuit to less than linear depth, and might be used

$$C(U_1, \dots, U_n) :=$$



The Moore–Nilsson conjecture

Parallel Quantum Computation and Quantum Codes

August 17, 1998

Cristopher Moore¹ and Martin Nilsson²

¹ Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501

moore@santafe.edu

² Chalmers Tekniska Högskola and University of Gothenburg

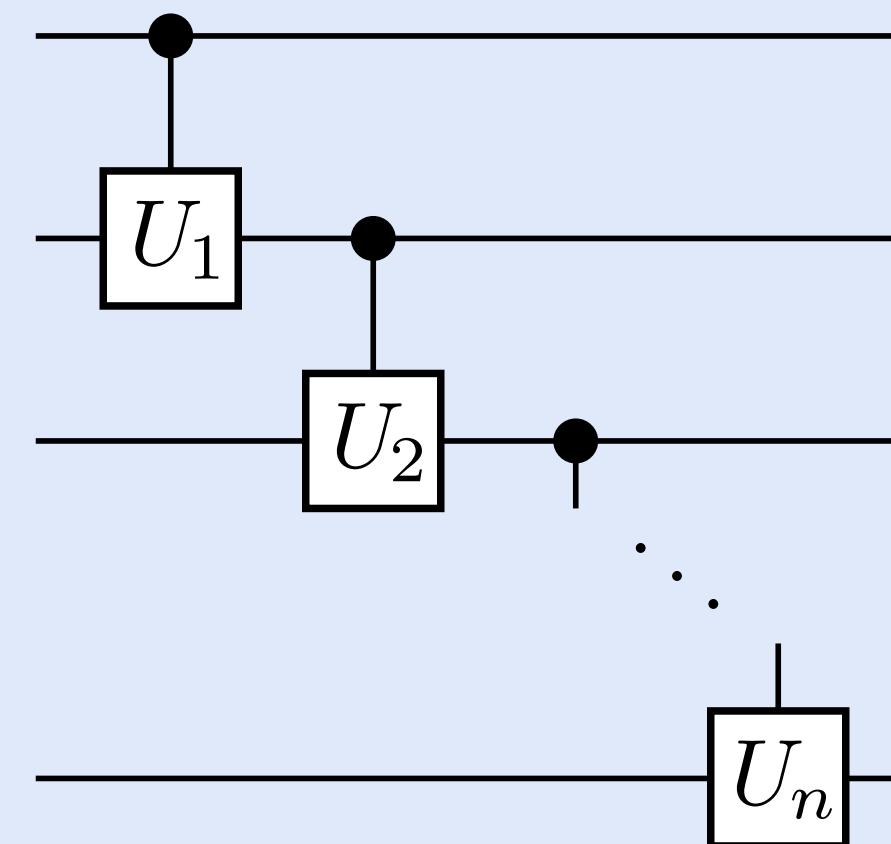
martin@fy.chalmers.se

Abstract. We propose a definition of **QNC**, the class of quantum circuits that are efficiently parallelizable. We exhibit several classes of circuits that are in **QNC**, including circuits for encoding and decoding quantum error-correcting codes, or more generally any circuit that does not use not gates, controlled π -shifts, and Hadamard gates. We show that the Quantum Fourier Transform can be parallelized. We also conjecture that an even simpler ‘staircase’ circuit can be parallelized to less than linear depth, and might be used

- Seemingly no classical analogue.
- Appealing candidate for “inherently sequential” unitary.
 - Simple quantum circuits cannot be parallelized?

Conjecture (Moore and Nilsson, 1998). The following unitary has minimum depth $\Omega(n)$ when all 1-qubit unitaries U_1, \dots, U_n are not diagonal or anti-diagonal.

$$C(U_1, \dots, U_n) :=$$



The Moore–Nilsson conjecture

Parallel Quantum Computation and Quantum Codes

August 17, 1998

Cristopher Moore¹ and Martin Nilsson²

¹ Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501
moore@santafe.edu

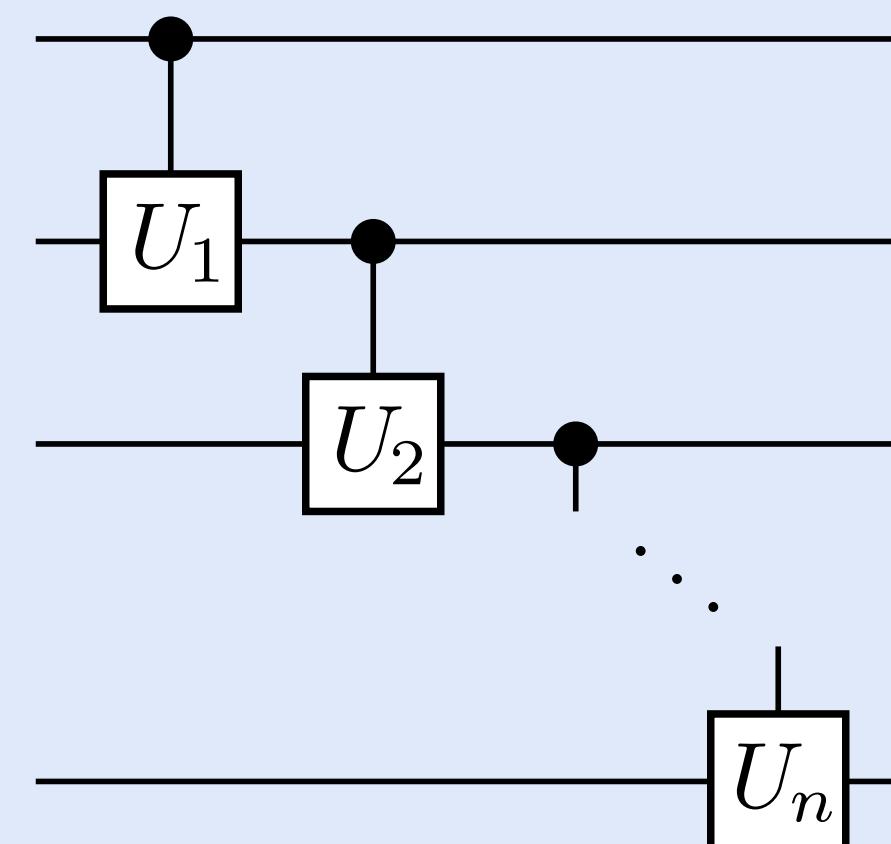
² Chalmers Tekniska Högskola and University of Gothenburg, martin@fy.chalmers.se

Abstract. We propose a definition of **QNC** efficient parallel class **NC**. We exhibit several that various classes of circuits can be parallel, including circuits for encoding and decoding correcting codes, or more generally any circuit not gates, controlled π -shifts, and Hadamard. the Quantum Fourier Transform can be parallelized. We also conjecture that an even simpler ‘staircase’ circuit can be parallelized to less than linear depth, and might be used

- Seemingly no classical analogue.
- Appealing candidate for “inherently sequential” unitary.
 - Simple quantum circuits cannot be parallelized?
 - Large coherence times necessary for quantum computing?

Conjecture (Moore and Nilsson, 1998). The following unitary has minimum depth $\Omega(n)$ when all 1-qubit unitaries U_1, \dots, U_n are not diagonal or anti-diagonal.

$$C(U_1, \dots, U_n) :=$$



The Moore–Nilsson conjecture

Parallel Quantum Computation and Quantum Codes

August 17, 1998

Cristopher Moore¹ and Martin Nilsson²

¹ Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501

moore@santafe.edu

² Chalmers Tekniska Högskola and University of Gothenburg

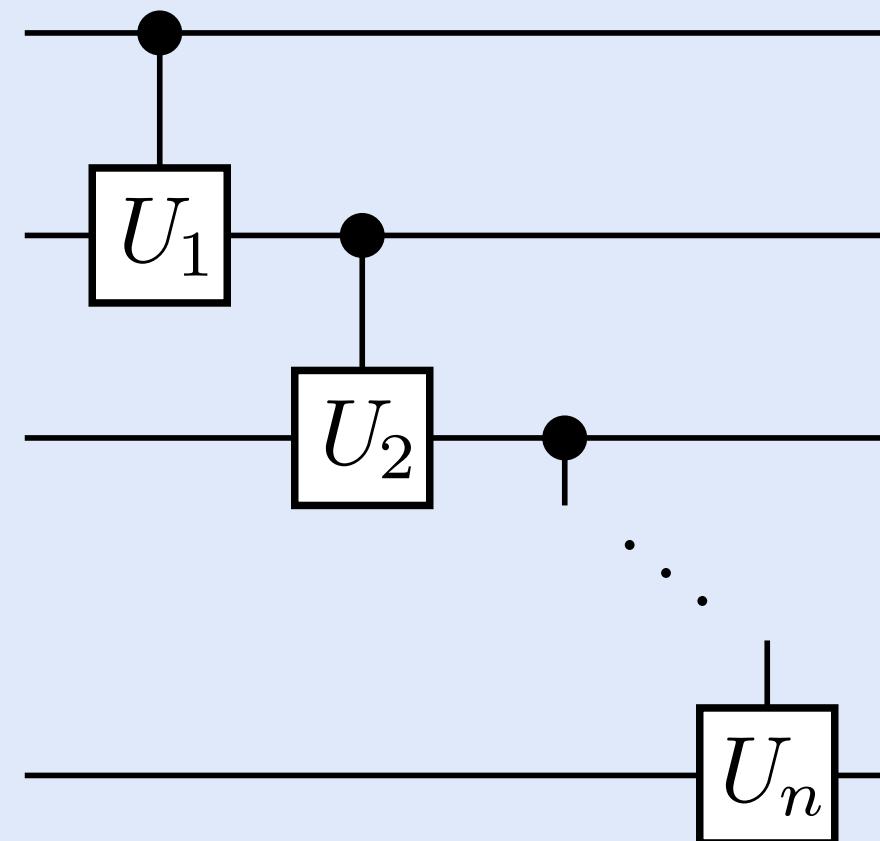
martin@fy.chalmers.se

Abstract. We propose a definition of **QNC** as the class of quantum circuits that are efficiently parallelizable. We exhibit several classes of circuits that are in **QNC**, including circuits for encoding and decoding error-correcting codes, or more generally any circuit that does not use not gates, controlled π -shifts, and Hadamard gates. The Quantum Fourier Transform can be parallelized, but we conjecture that an even simpler ‘staircase’ circuit can be parallelized to less than linear depth, and might be used

- Seemingly no classical analogue.
- Appealing candidate for “inherently sequential” unitary.
 - Simple quantum circuits cannot be parallelized?
 - Large coherence times necessary for quantum computing?
 - Schemes for verifying device depth?

Conjecture (Moore and Nilsson, 1998). The following unitary has minimum depth $\Omega(n)$ when all 1-qubit unitaries U_1, \dots, U_n are not diagonal or anti-diagonal.

$$C(U_1, \dots, U_n) :=$$



**The Moore–Nilsson conjecture highlights dual
motivations for studying quantum parallelization:**

The Moore–Nilsson conjecture highlights dual motivations for studying quantum parallelization:

- Need for quantum parallelization techniques: can we at least recover quantum versions of classical parallelization ideas?

The Moore–Nilsson conjecture highlights dual motivations for studying quantum parallelization:

- Need for quantum parallelization techniques: can we at least recover quantum versions of classical parallelization ideas?
- Depth lower bounds for quantum problems? Maybe it's easier to prove *quantum* transformations are inherently sequential? Separate quantum-input QNC from BQP?

Our results

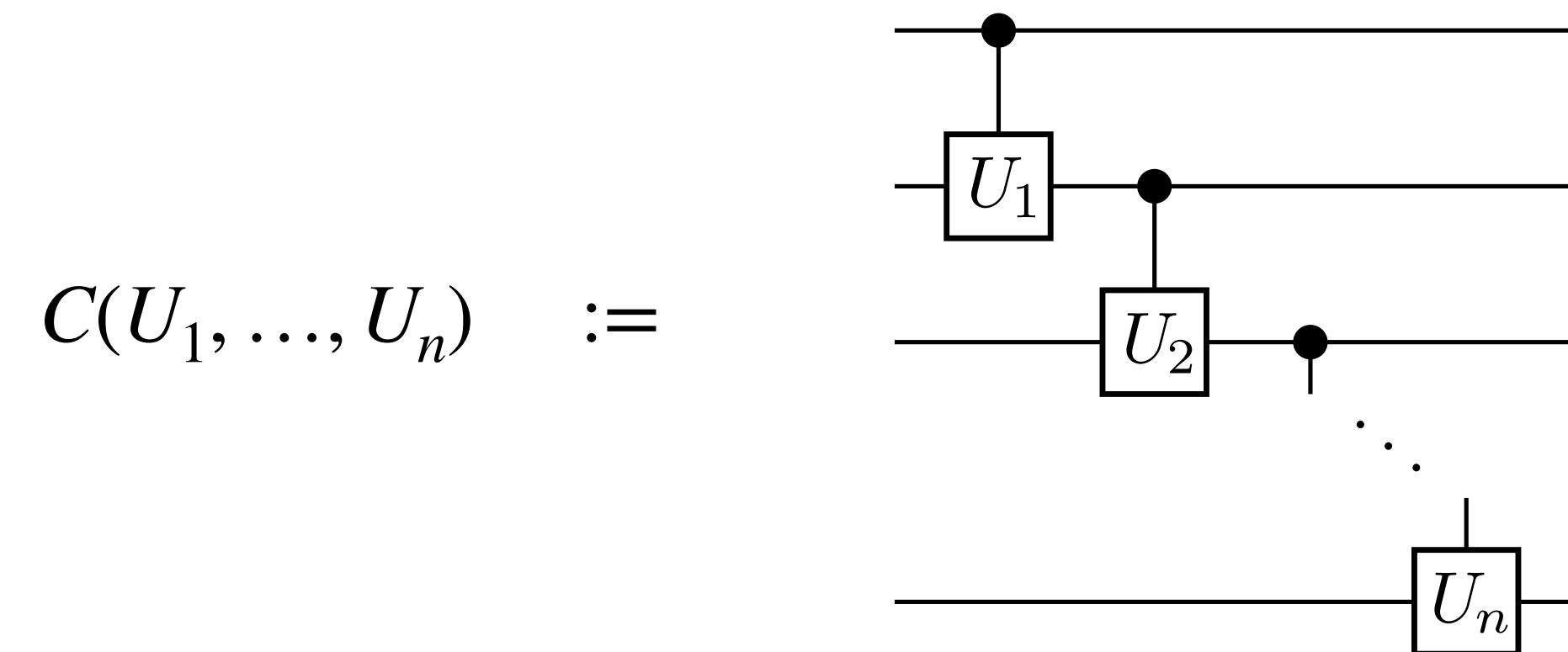
Our results

1. Moore–Nilsson unitaries have $O(\log n)$ -depth circuits

Our results

1. Moore–Nilsson unitaries have $O(\log n)$ -depth circuits

Theorem. For any 1-qubit unitaries U_1, \dots, U_n , the unitary

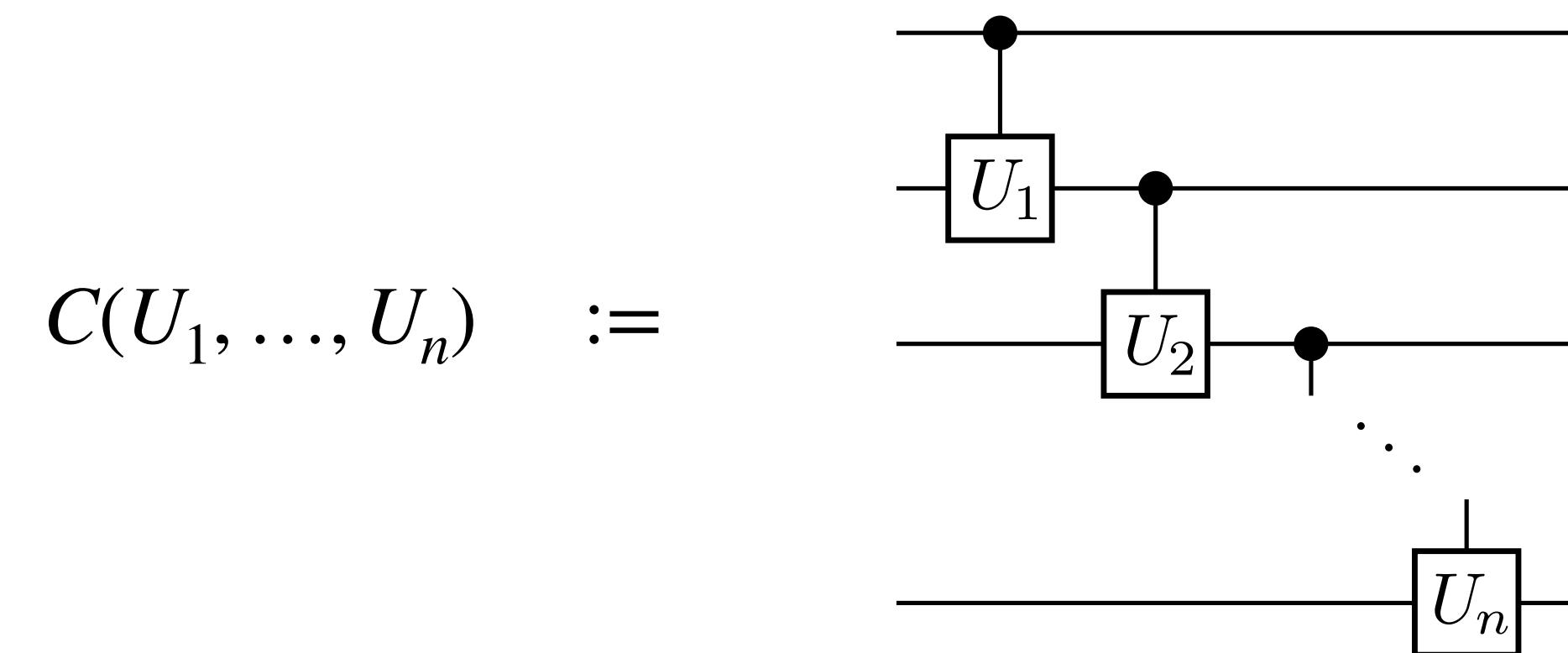


has an exact, ancilla-free circuit of depth $O(\log n)$.

Our results

1. Moore–Nilsson unitaries have $O(\log n)$ -depth circuits

Theorem. For any 1-qubit unitaries U_1, \dots, U_n , the unitary



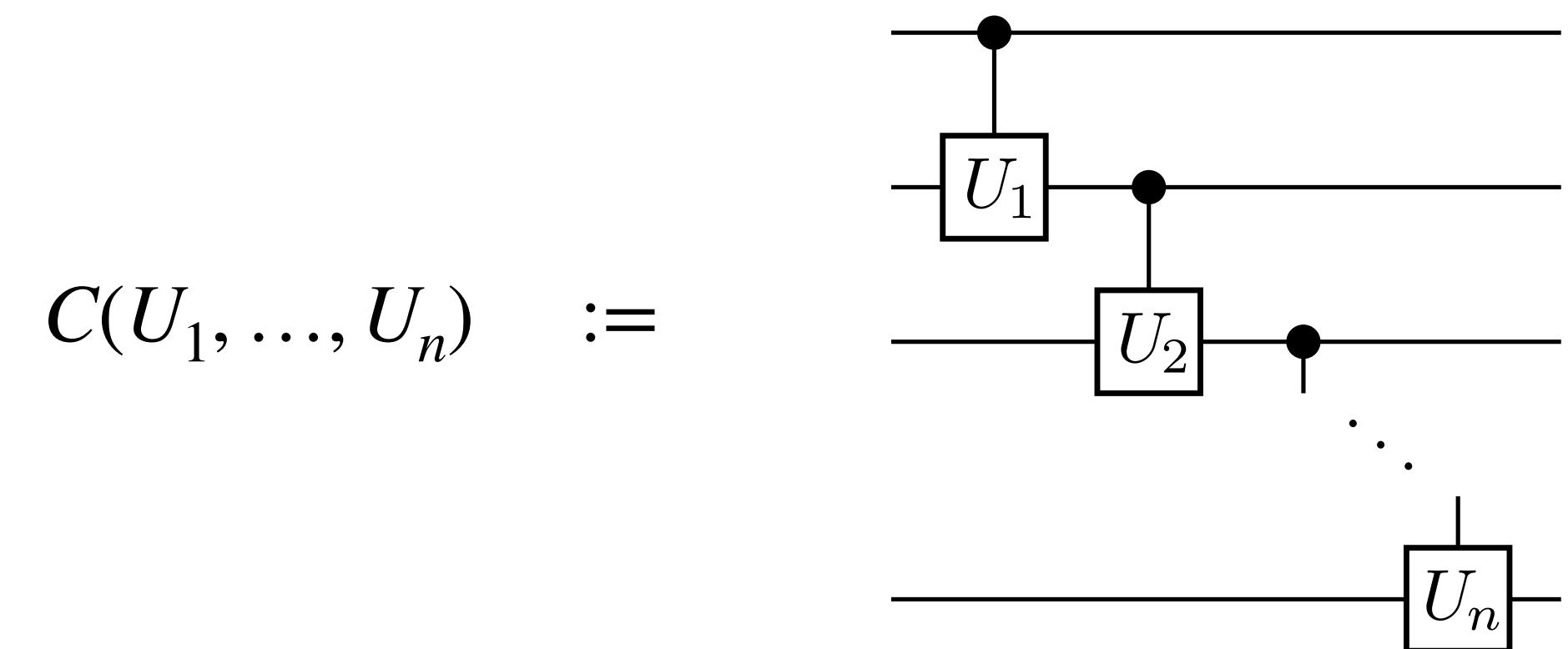
has an exact, ancilla-free circuit of depth $O(\log n)$.

Bonus: in regime of 2D geometrically-local circuits:
 $O(\sqrt{n})$ depth, $O(n)$ ancillae

Our results

1. Moore–Nilsson unitaries have $O(\log n)$ -depth circuits

Theorem. For any 1-qubit unitaries U_1, \dots, U_n , the unitary



has an exact, ancilla-free circuit of depth $O(\log n)$.

Bonus: in regime of 2D geometrically-local circuits:
 $O(\sqrt{n})$ depth, $O(n)$ ancillae

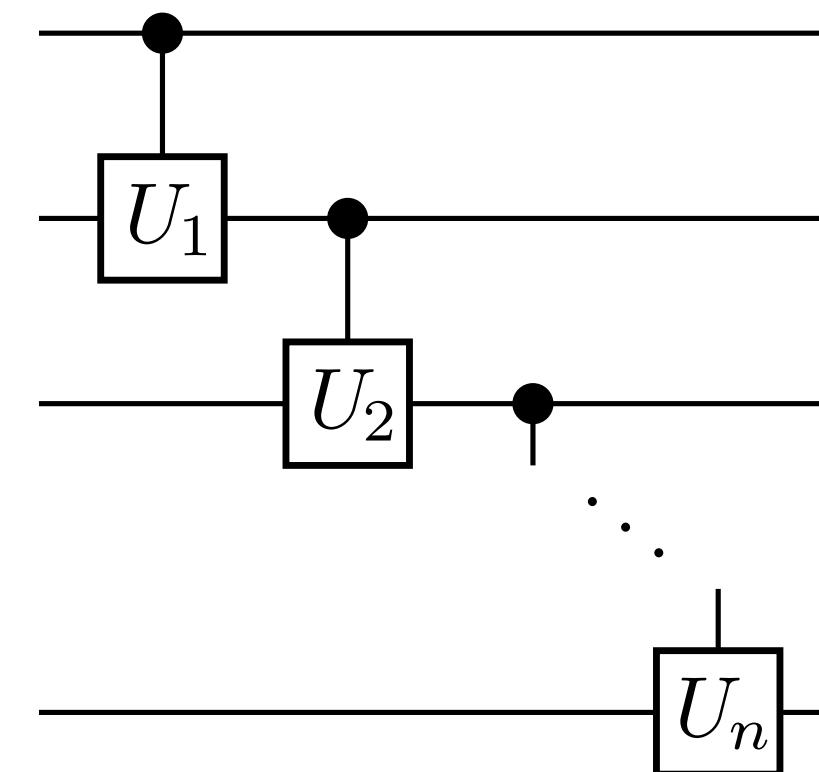
2. Depth reductions for general “control-cascade circuits”

Our results

1. Moore–Nilsson unitaries have $O(\log n)$ -depth circuits

Theorem. For any 1-qubit unitaries U_1, \dots, U_n , the unitary

$$C(U_1, \dots, U_n) :=$$



Bonus: in regime of 2D geometrically-local circuits:
 $O(\sqrt{n})$ depth, $O(n)$ ancillae

has an exact, ancilla-free circuit of depth $O(\log n)$.

2. Depth reductions for general “control-cascade circuits”

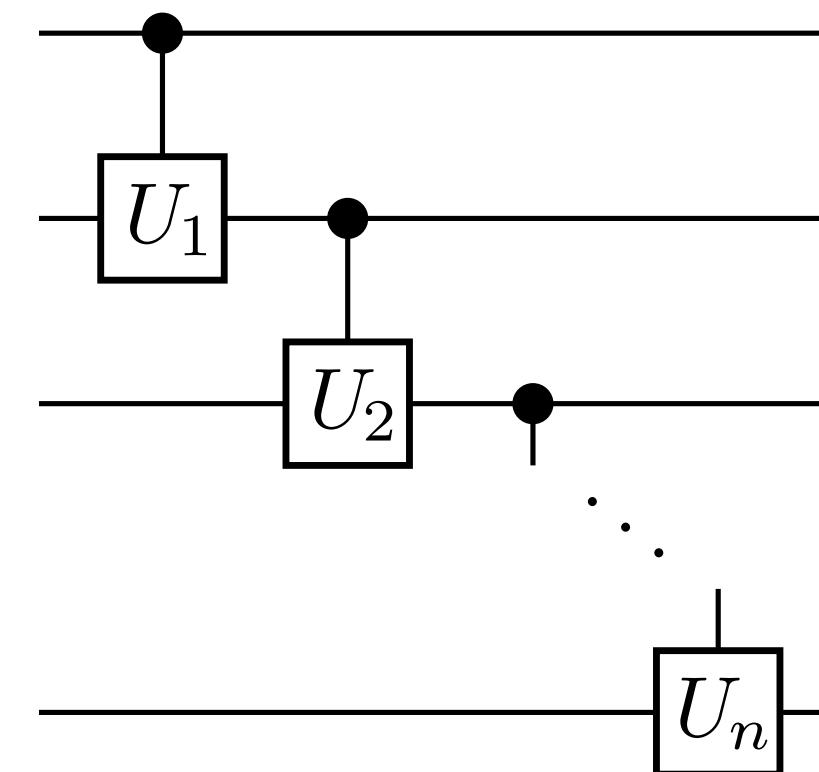
Example corollary. For all $(2 \log n)$ -qubit unitaries U_1, \dots, U_n , the unitary $C(U_1, \dots, U_n)$ has an exact circuit of depth $O(n \log n)$ using $O(n^{3/2})$ ancillae.

Our results

1. Moore–Nilsson unitaries have $O(\log n)$ -depth circuits

Theorem. For any 1-qubit unitaries U_1, \dots, U_n , the unitary

$$C(U_1, \dots, U_n) :=$$



has an exact, ancilla-free circuit of depth $O(\log n)$.

2. Depth reductions for general “control-cascade circuits”

Example corollary. For all $(2 \log n)$ -qubit unitaries U_1, \dots, U_n , the unitary $C(U_1, \dots, U_n)$ has an exact circuit of depth $O(n \log n)$ using $O(n^{3/2})$ ancillae.

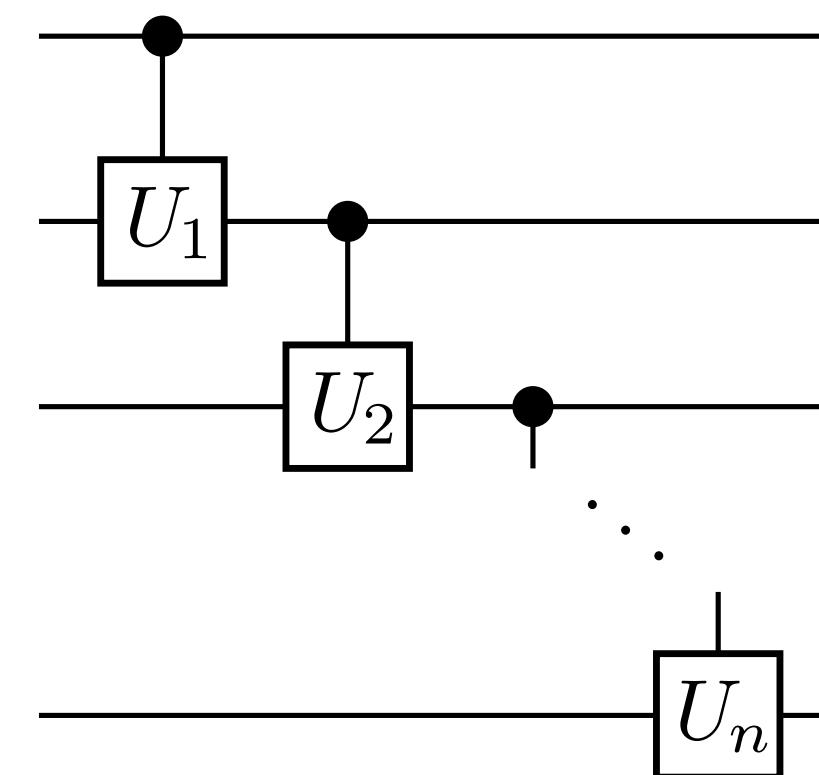
C.f. the naive depth of $\tilde{O}(n^2)$

Our results

1. Moore–Nilsson unitaries have $O(\log n)$ -depth circuits

Theorem. For any 1-qubit unitaries U_1, \dots, U_n , the unitary

$$C(U_1, \dots, U_n) :=$$



Bonus: in regime of 2D geometrically-local circuits:
 $O(\sqrt{n})$ depth, $O(n)$ ancillae

Start
here

has an exact, ancilla-free circuit of depth $O(\log n)$.

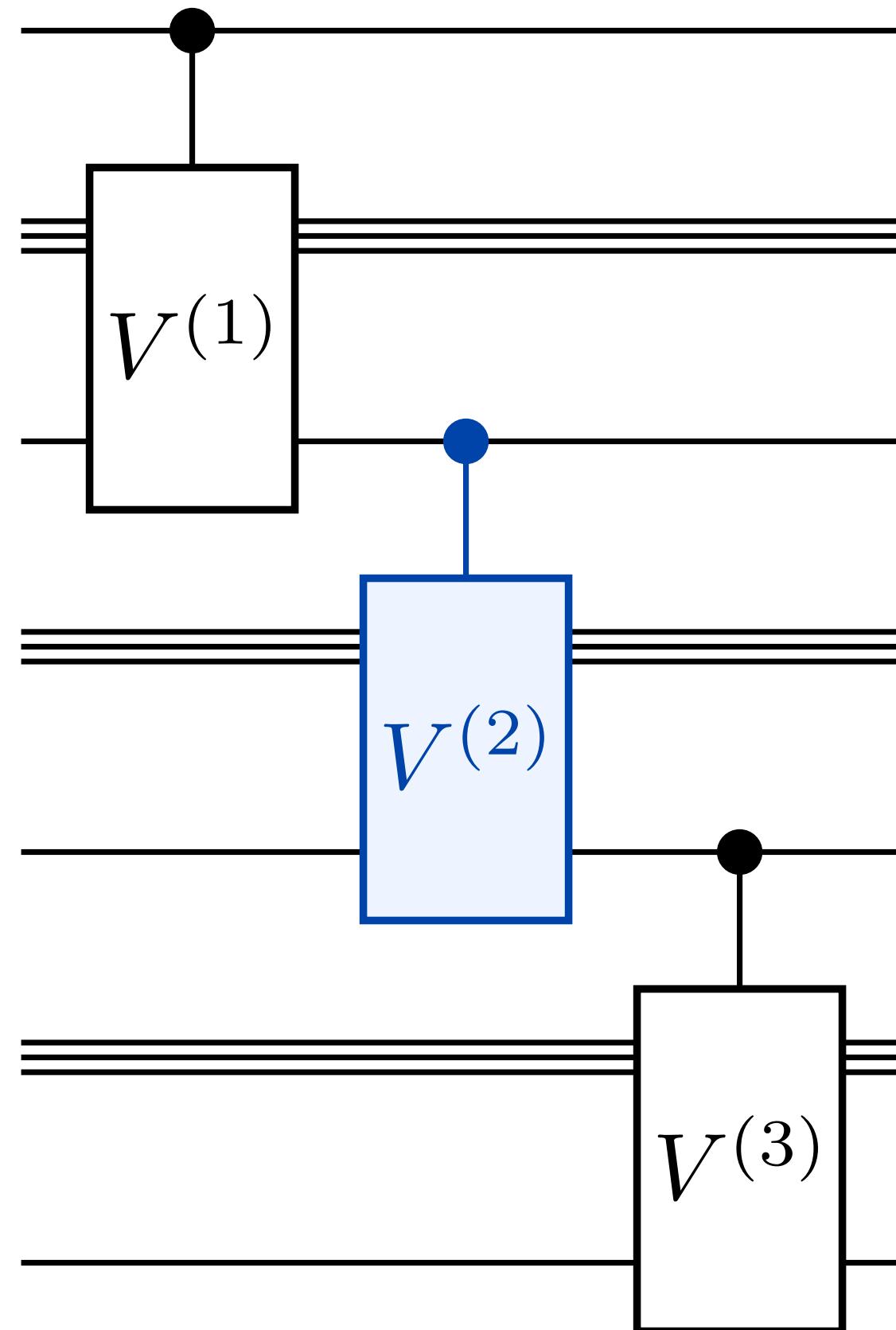
2. Depth reductions for general “control-cascade circuits”

C.f. the naive depth of
 $\tilde{O}(n^2)$

Example corollary. For all $(2 \log n)$ -qubit unitaries U_1, \dots, U_n , the unitary $C(U_1, \dots, U_n)$ has an exact circuit of depth $O(n \log n)$ using $O(n^{3/2})$ ancillae.

Quantum precomputation: some intuition

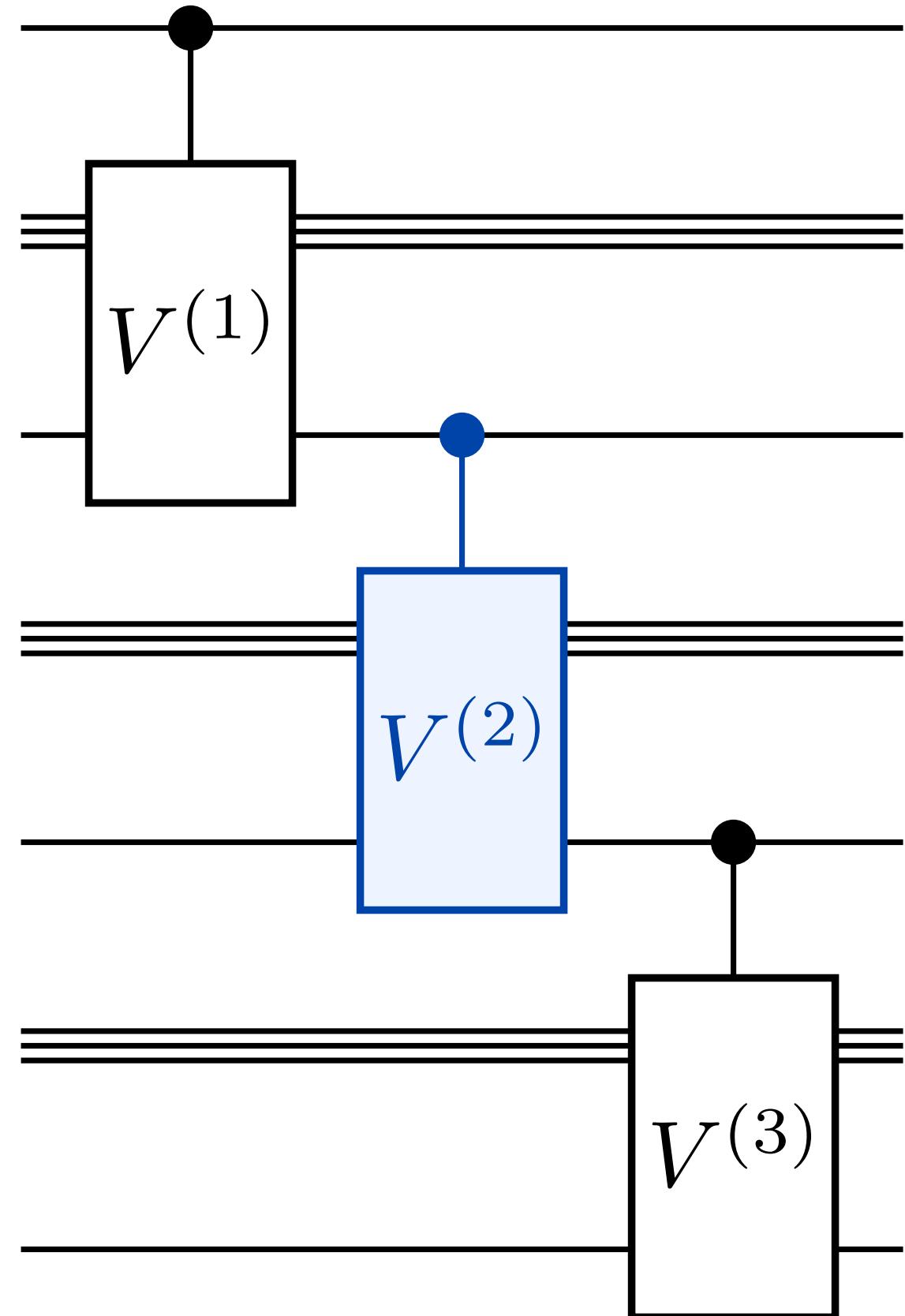
Quantum precomputation: some intuition



Consider a cascade
of m -many k -qubit
controlled unitaries

Quantum precomputation: some intuition

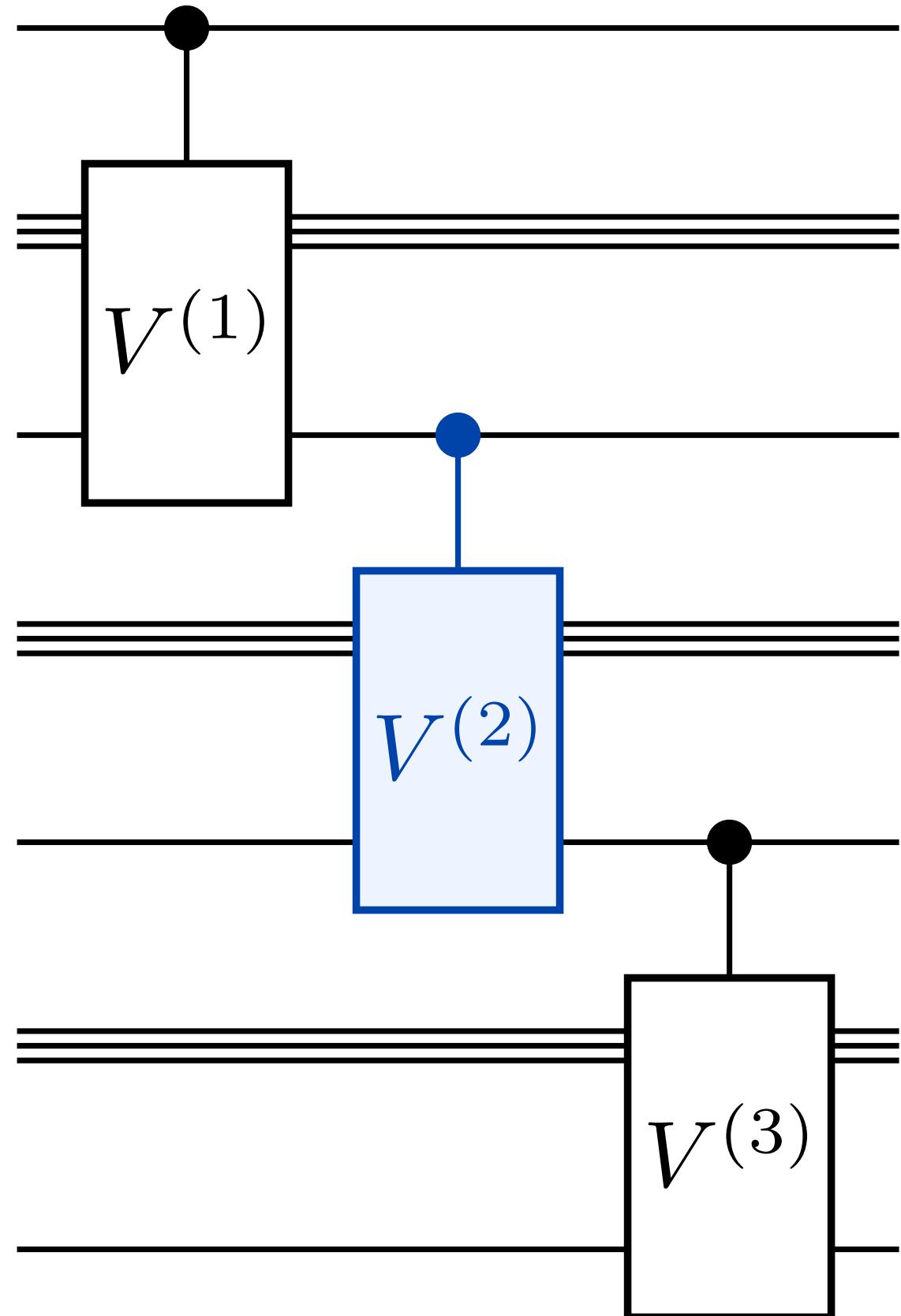
Fact ([STYYZ23]). Ancilla-free circuits for general k -qubit unitaries have worst-case depth $\Theta(4^k/k)$.



Consider a cascade of m -many k -qubit controlled unitaries

Quantum precomputation: some intuition

Fact ([STYYZ23]). Ancilla-free circuits for general k -qubit unitaries have worst-case depth $\Theta(4^k/k)$.



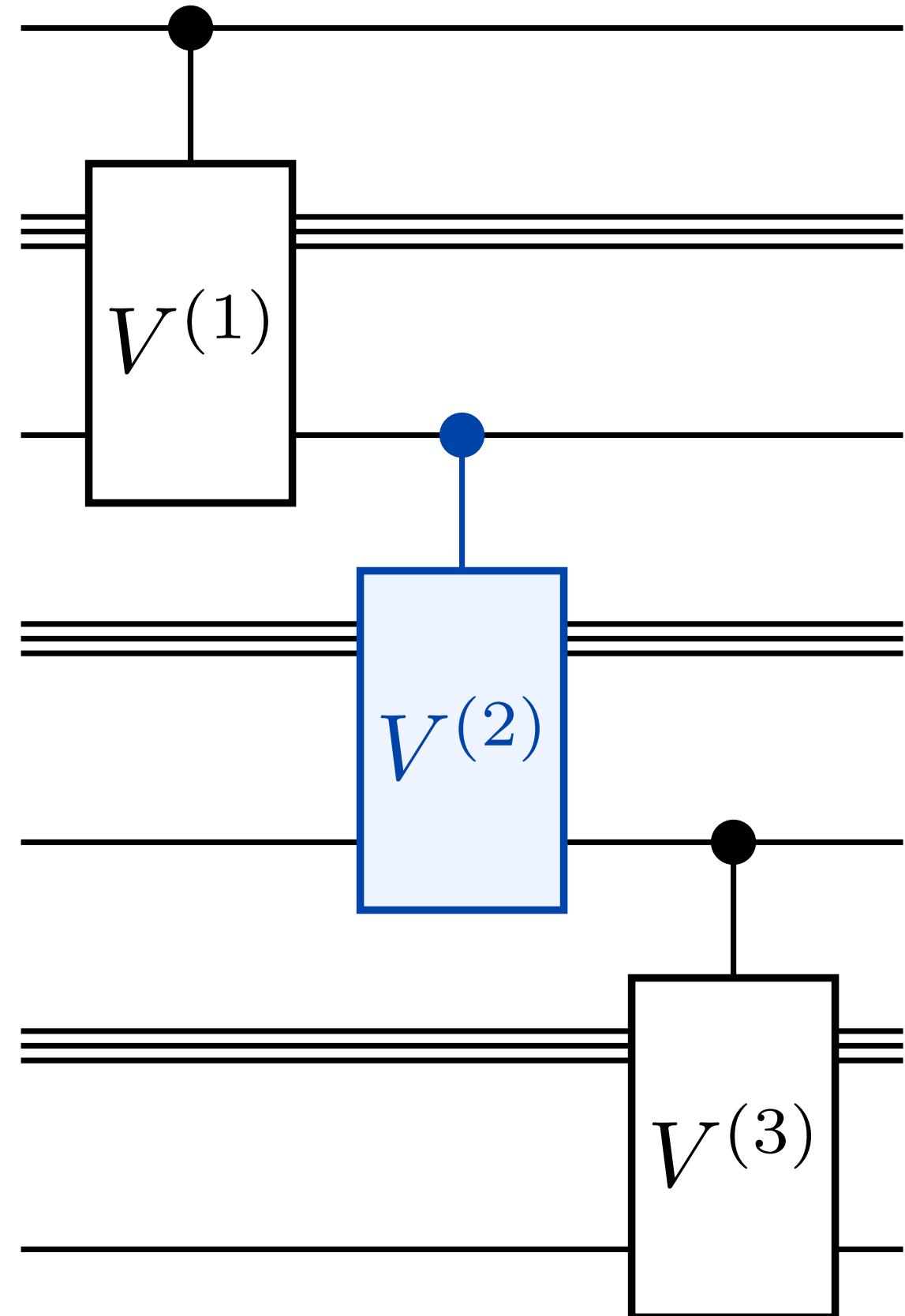
$$4^k + 4^k + 4^k \approx m \cdot 4^k$$

Consider a cascade of m -many k -qubit controlled unitaries

Quantum precomputation: some intuition

Fact ([STYYZ23]). Ancilla-free circuits for general k -qubit unitaries have worst-case depth $\Theta(4^k/k)$.

Observation: diagonal unitaries are pretty cheap



$$4^k + 4^k + 4^k \approx m \cdot 4^k$$

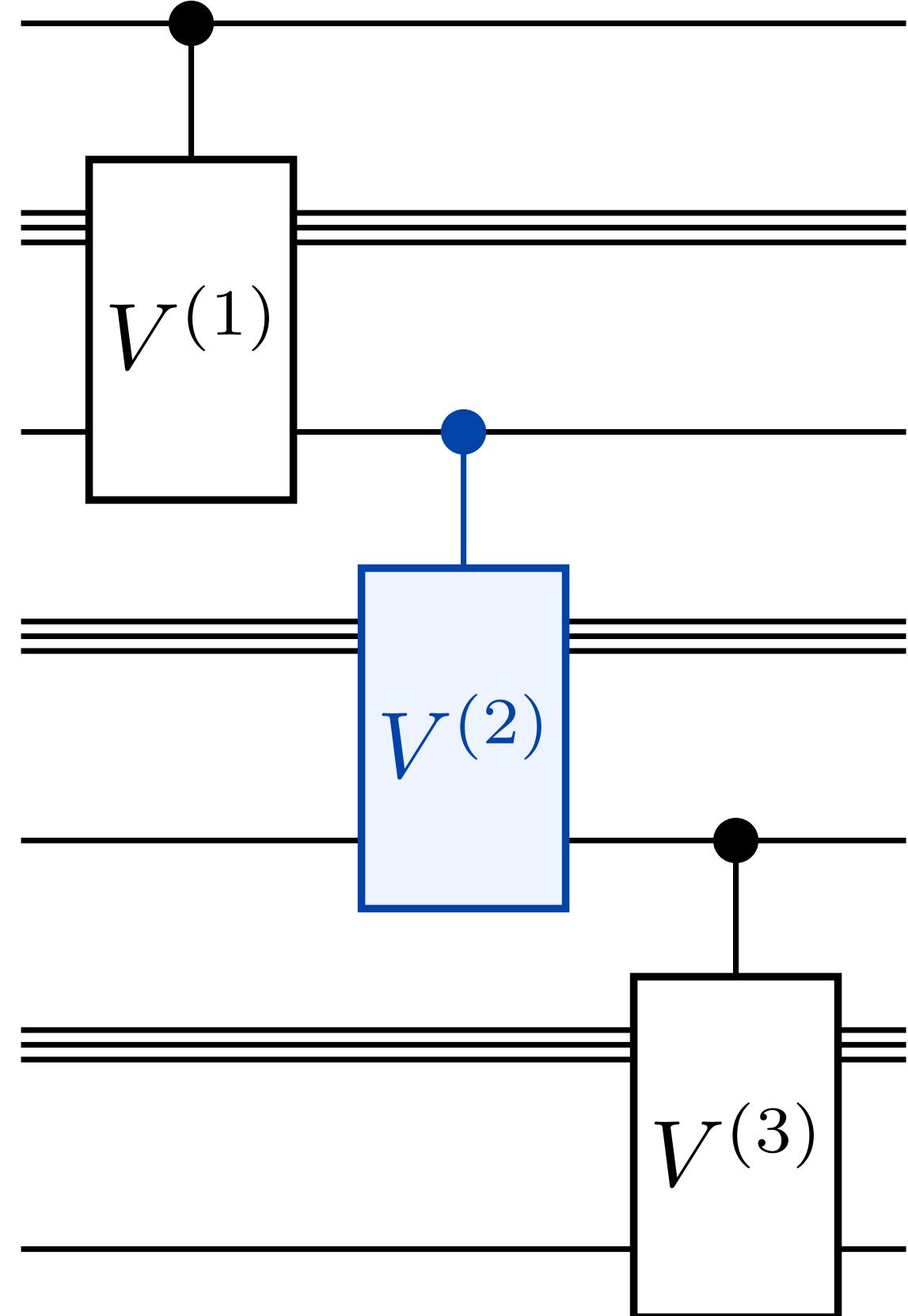
Consider a cascade
of m -many k -qubit
controlled unitaries

Quantum precomputation: some intuition

Fact ([STYYZ23]). Ancilla-free circuits for general k -qubit unitaries have worst-case depth $\Theta(4^k/k)$.

Observation: diagonal unitaries are pretty cheap

Fact ([STYYZ23]). Ancilla-free circuits for **diagonal** k -qubit unitaries have worst-case depth $\Theta(2^k/k)$.



$$4^k + 4^k + 4^k \approx m \cdot 4^k$$

Consider a cascade of m -many k -qubit controlled unitaries

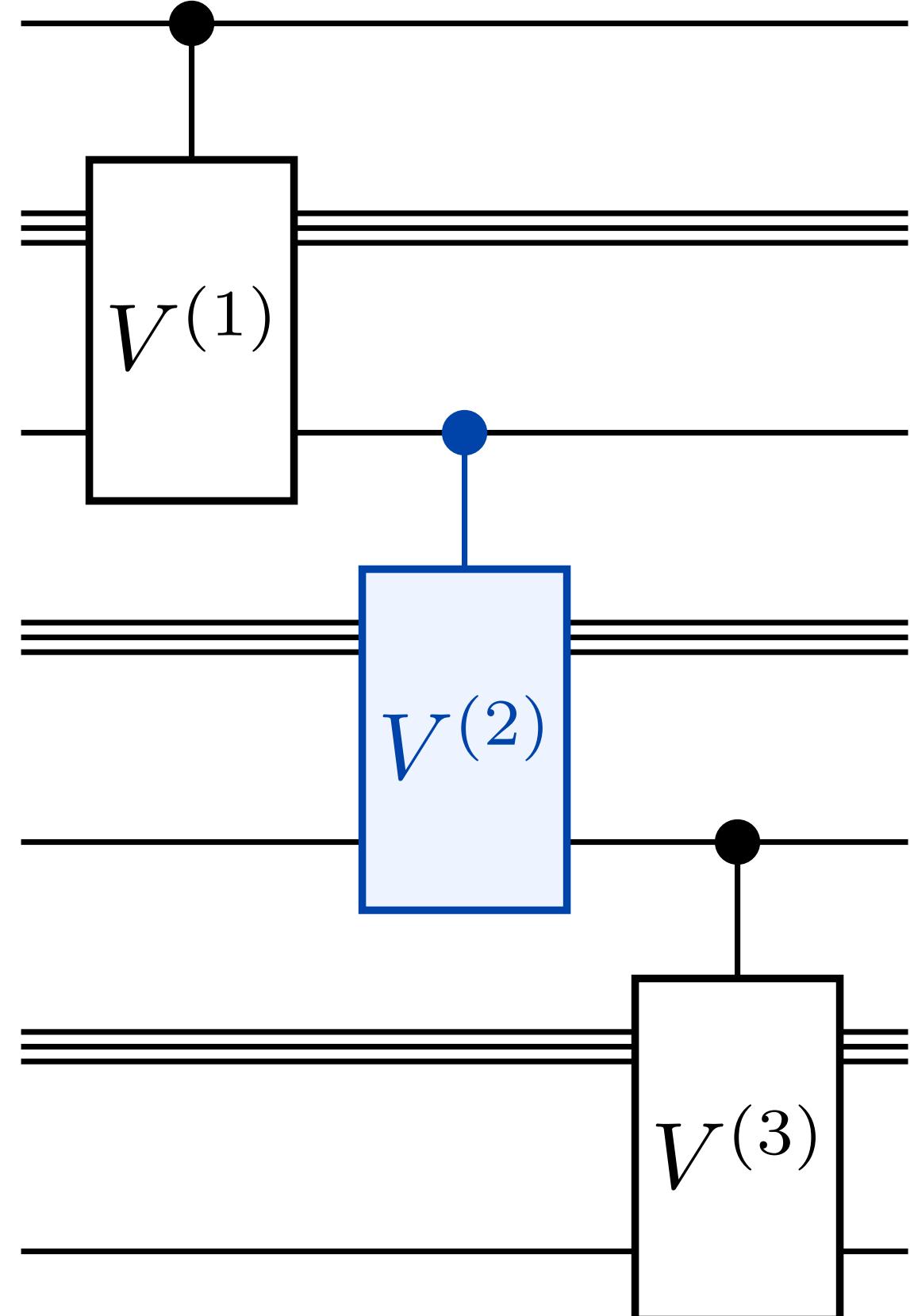
Quantum precomputation: some intuition

Fact ([STYYZ23]). Ancilla-free circuits for general k -qubit unitaries have worst-case depth $\Theta(4^k/k)$.

Observation: diagonal unitaries are pretty cheap

Fact ([STYYZ23]). Ancilla-free circuits for **diagonal** k -qubit unitaries have worst-case depth $\Theta(2^k/k)$.

Goal: make the V 's diagonal somehow



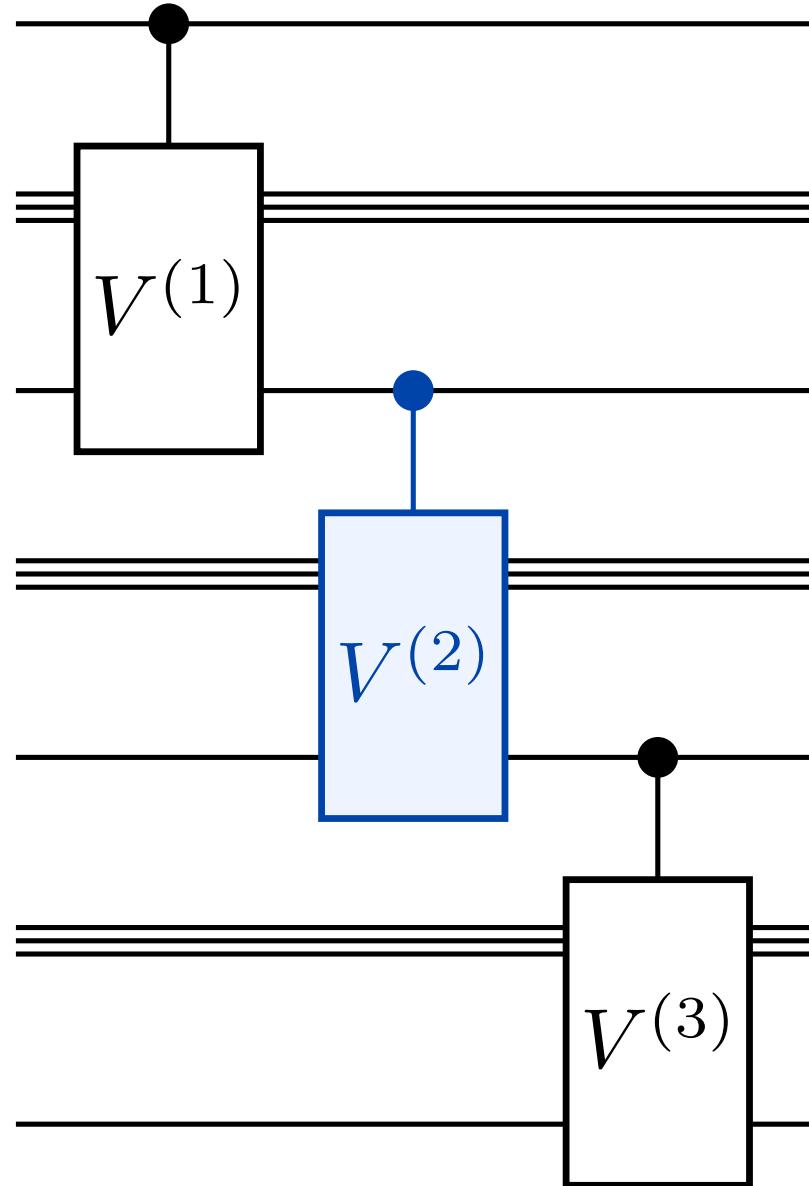
Consider a cascade of m -many k -qubit controlled unitaries

$$4^k + 4^k + 4^k \approx m \cdot 4^k$$

Quantum precomputation: some intuition

First attempt: diagonalization?

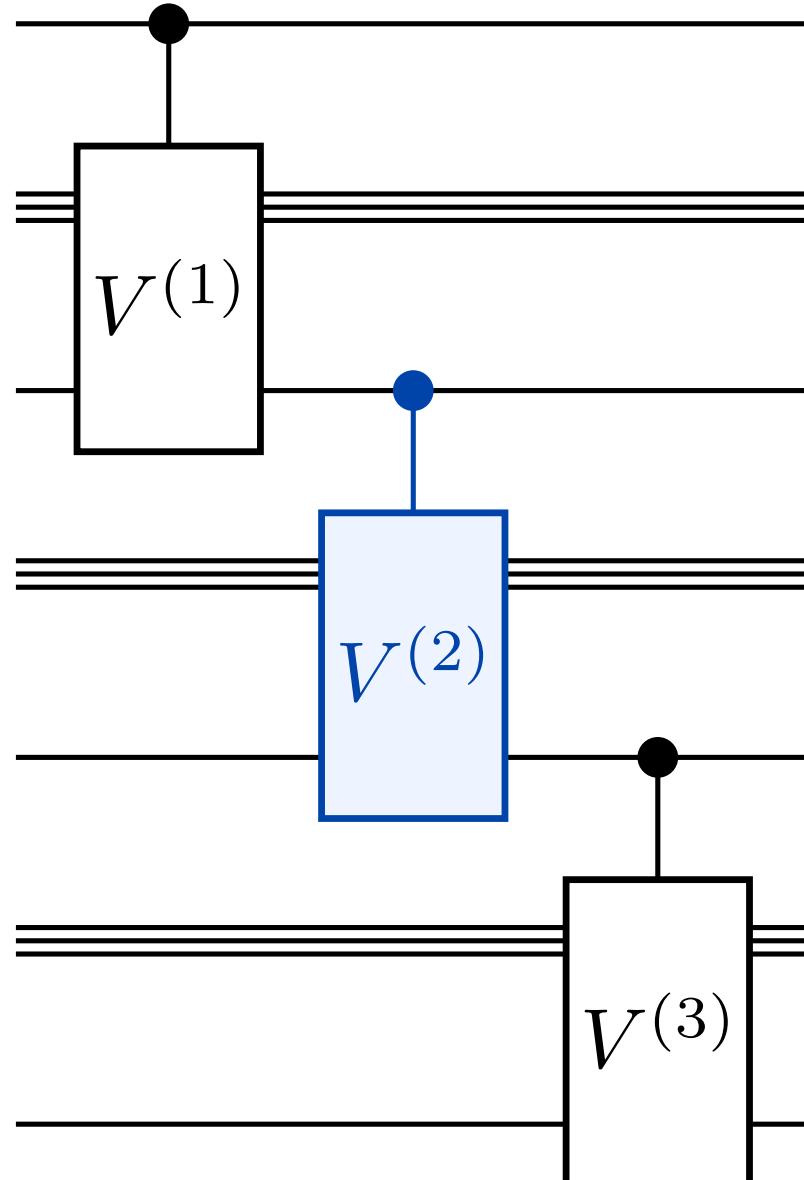
Original circuit



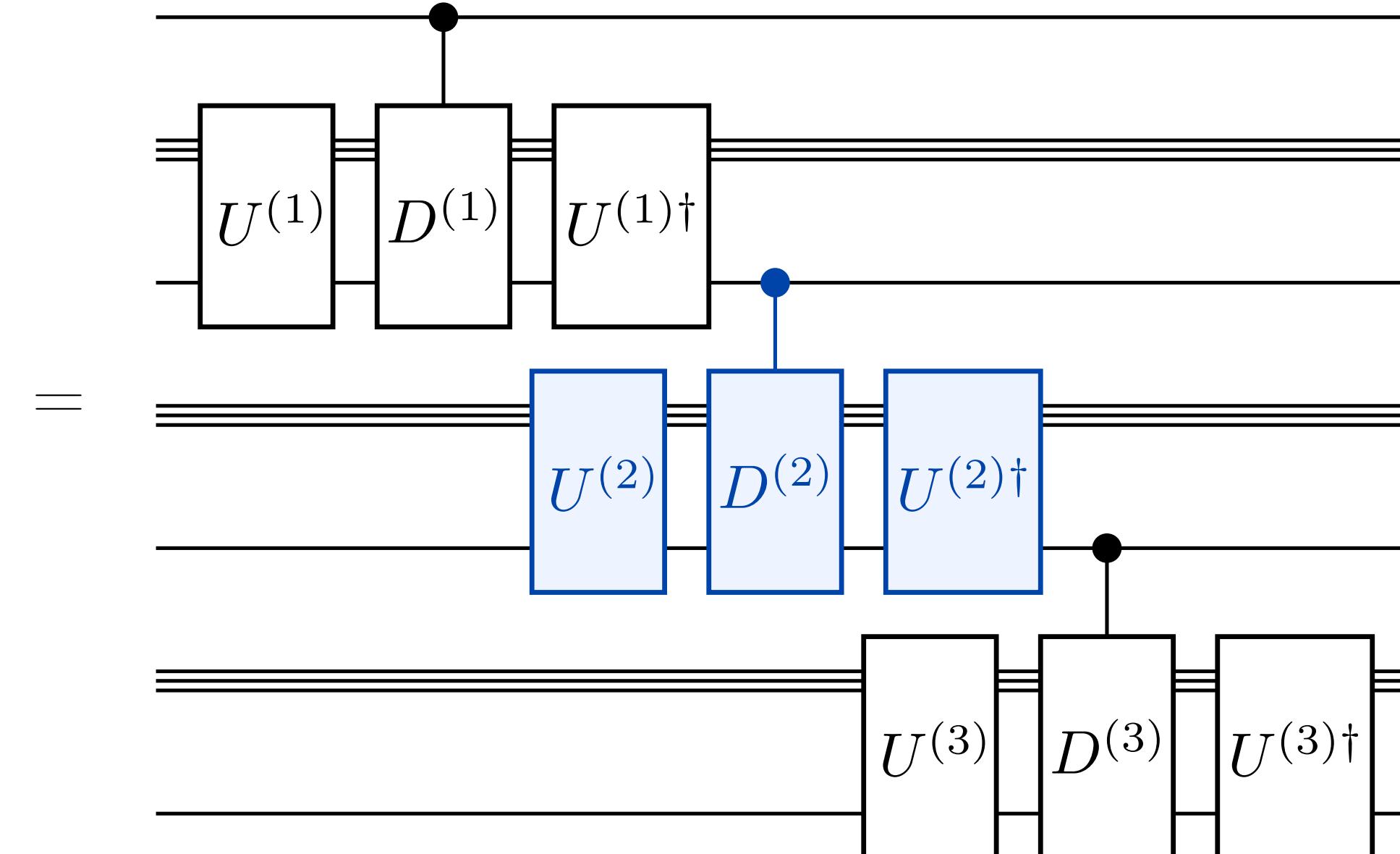
Quantum precomputation: some intuition

First attempt: diagonalization?

Original circuit



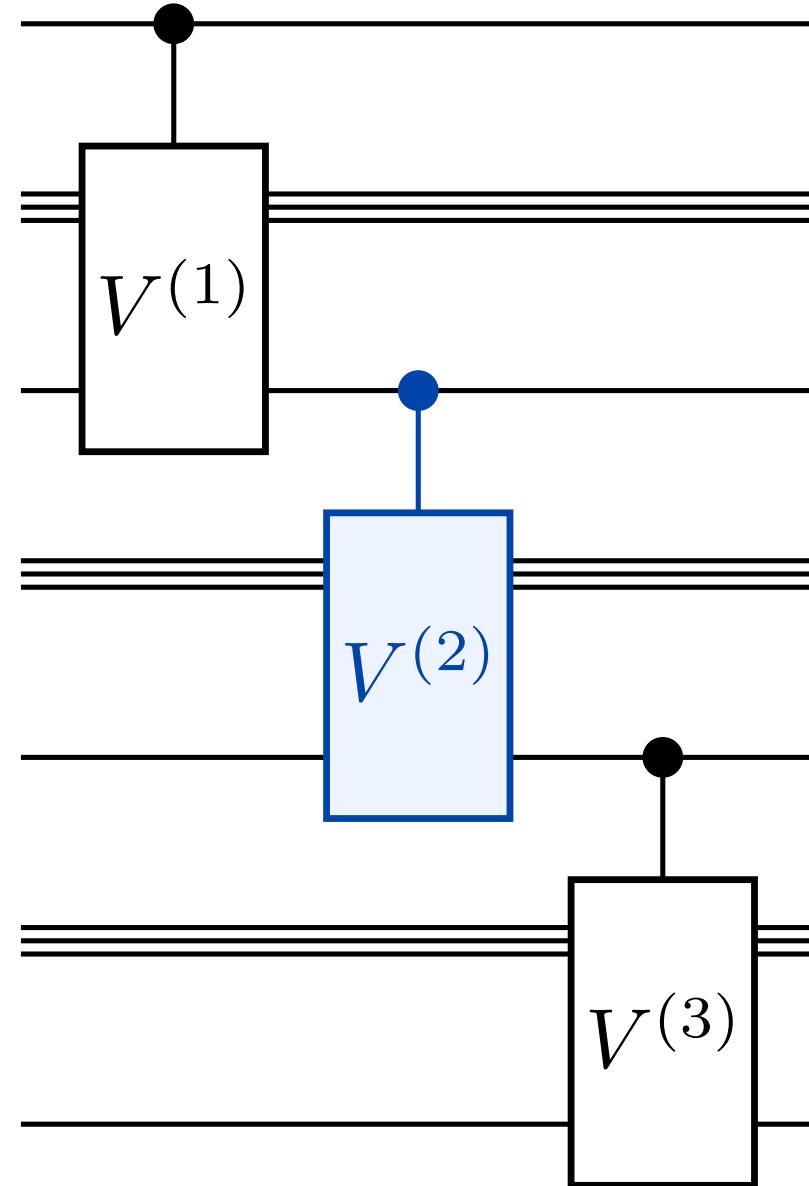
Diagonalized via $V^{(i)} = U^{(i)}D^{(i)}U^{(i)\dagger}$



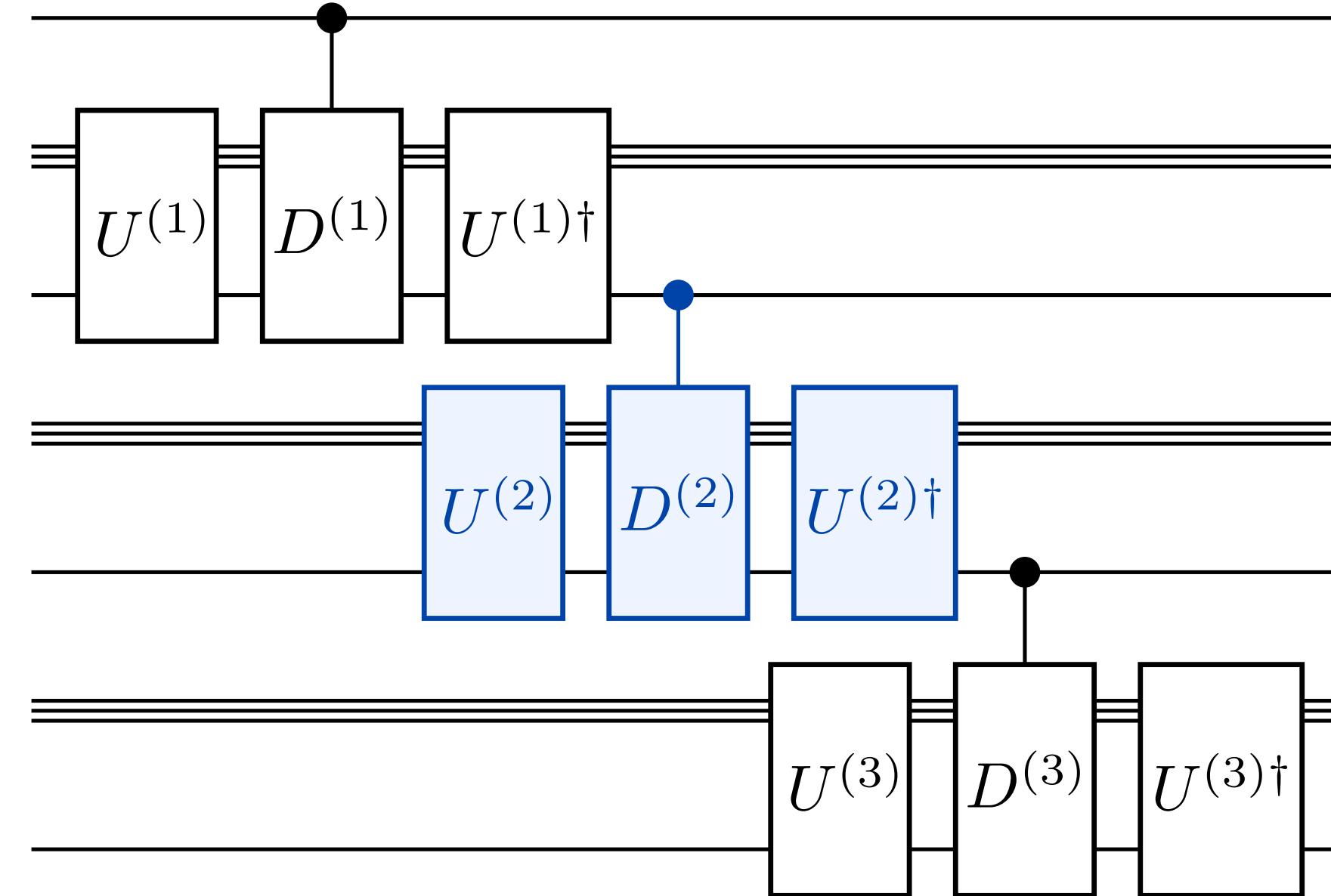
Quantum precomputation: some intuition

First attempt: diagonalization?

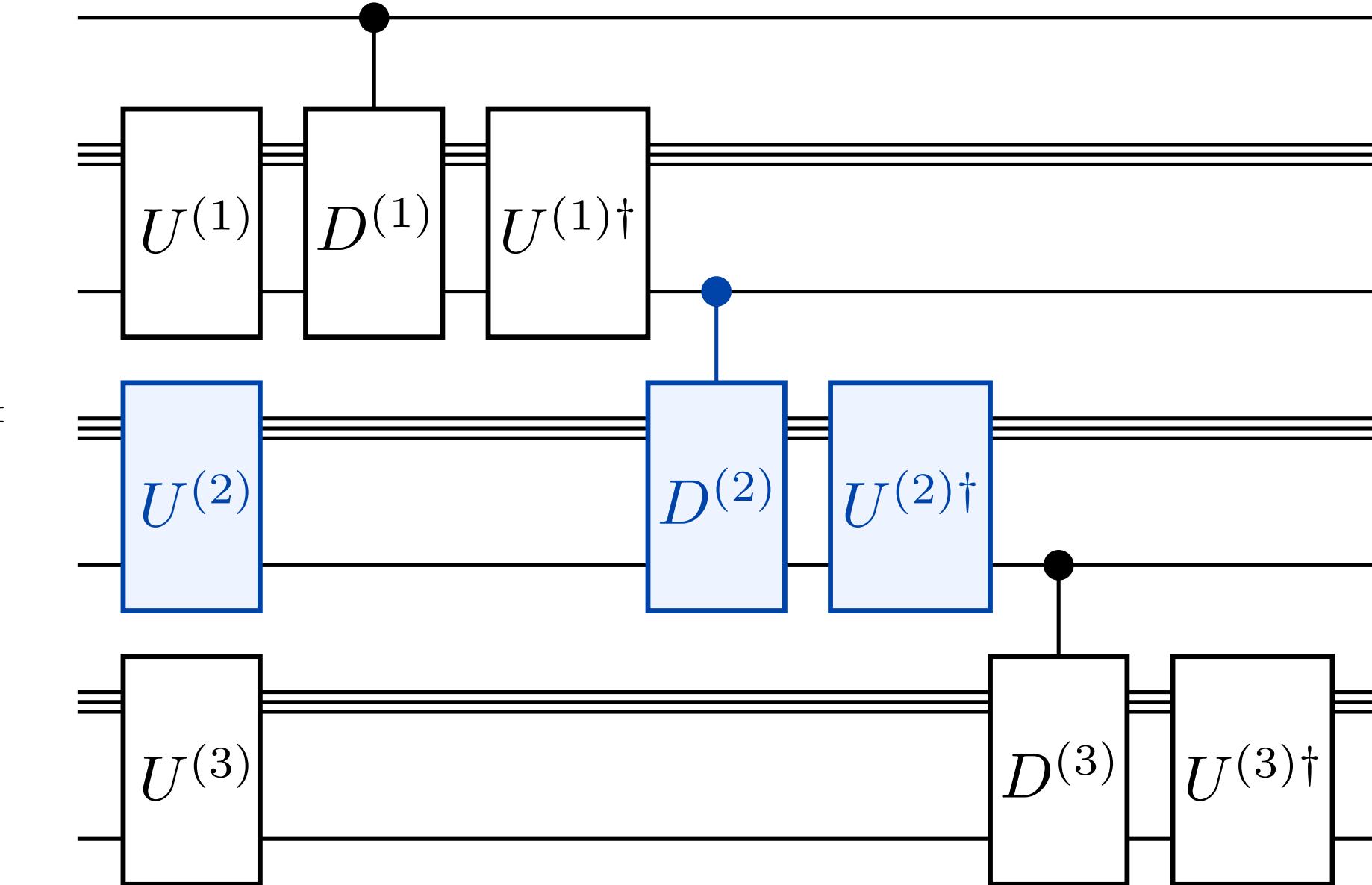
Original circuit



Diagonalized via $V^{(i)} = U^{(i)}D^{(i)}U^{(i)\dagger}$



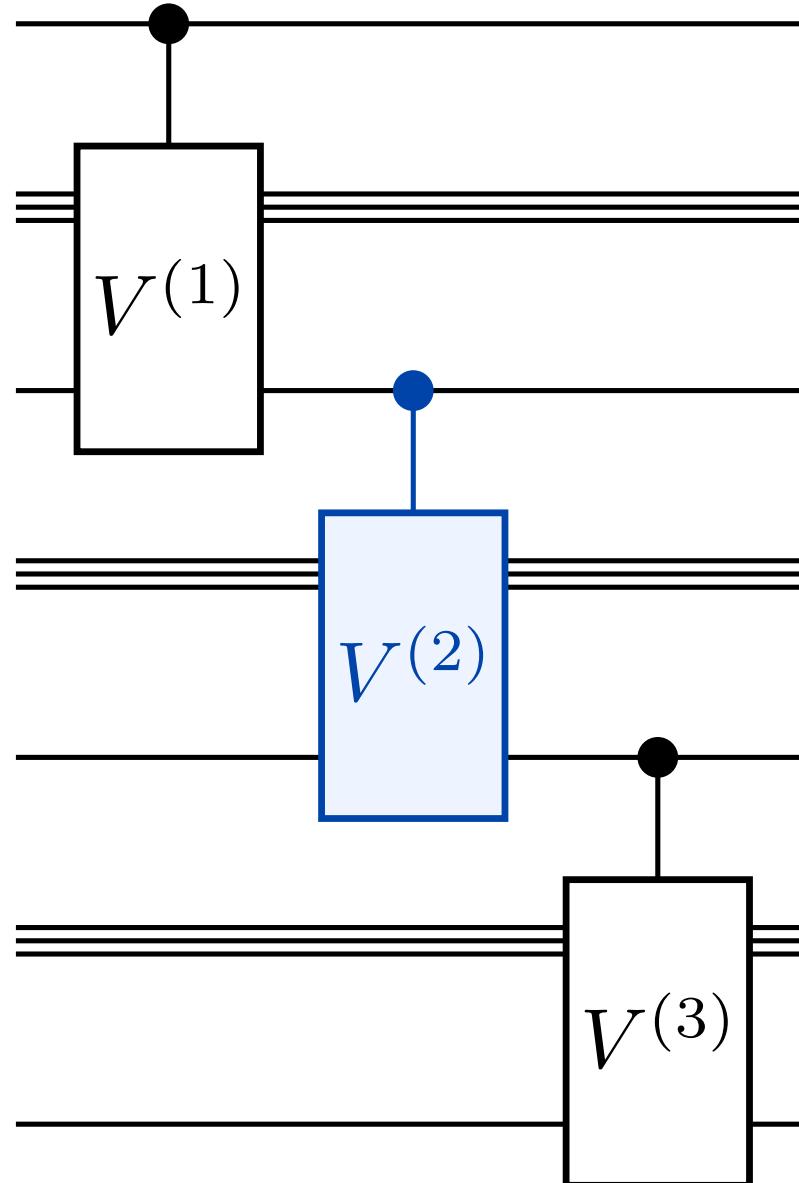
Rearrange



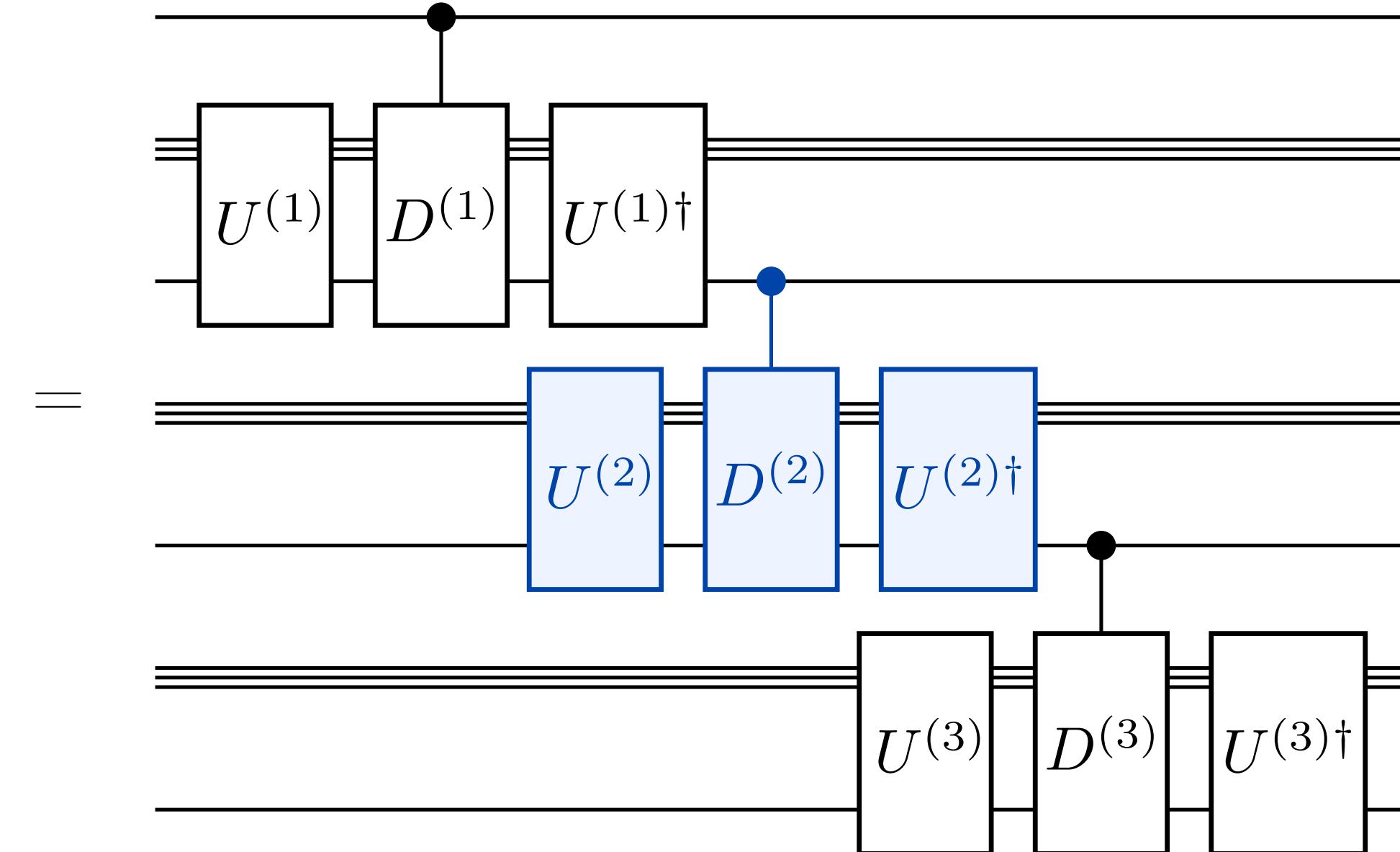
Quantum precomputation: some intuition

First attempt: diagonalization?

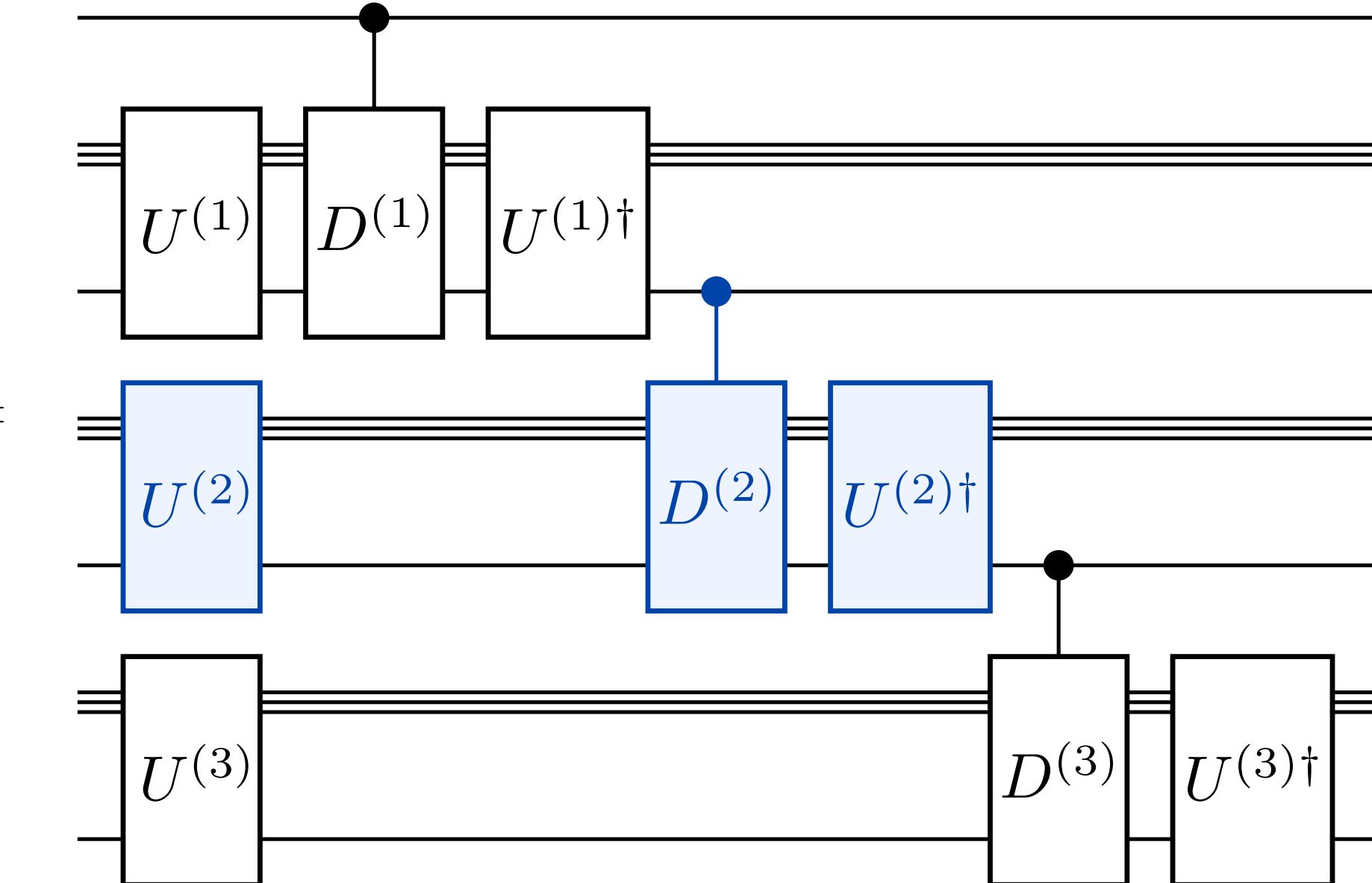
Original circuit



Diagonalized via $V^{(i)} = U^{(i)}D^{(i)}U^{(i)\dagger}$



Rearrange

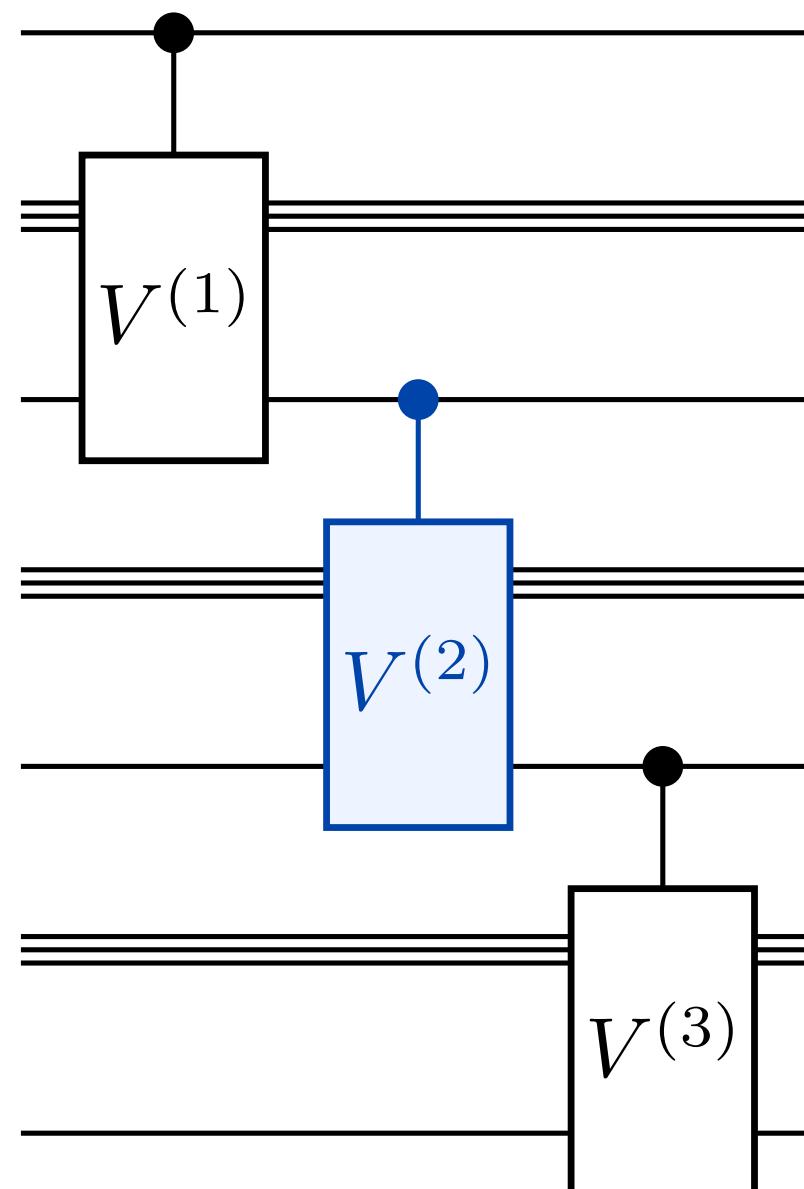


4^k

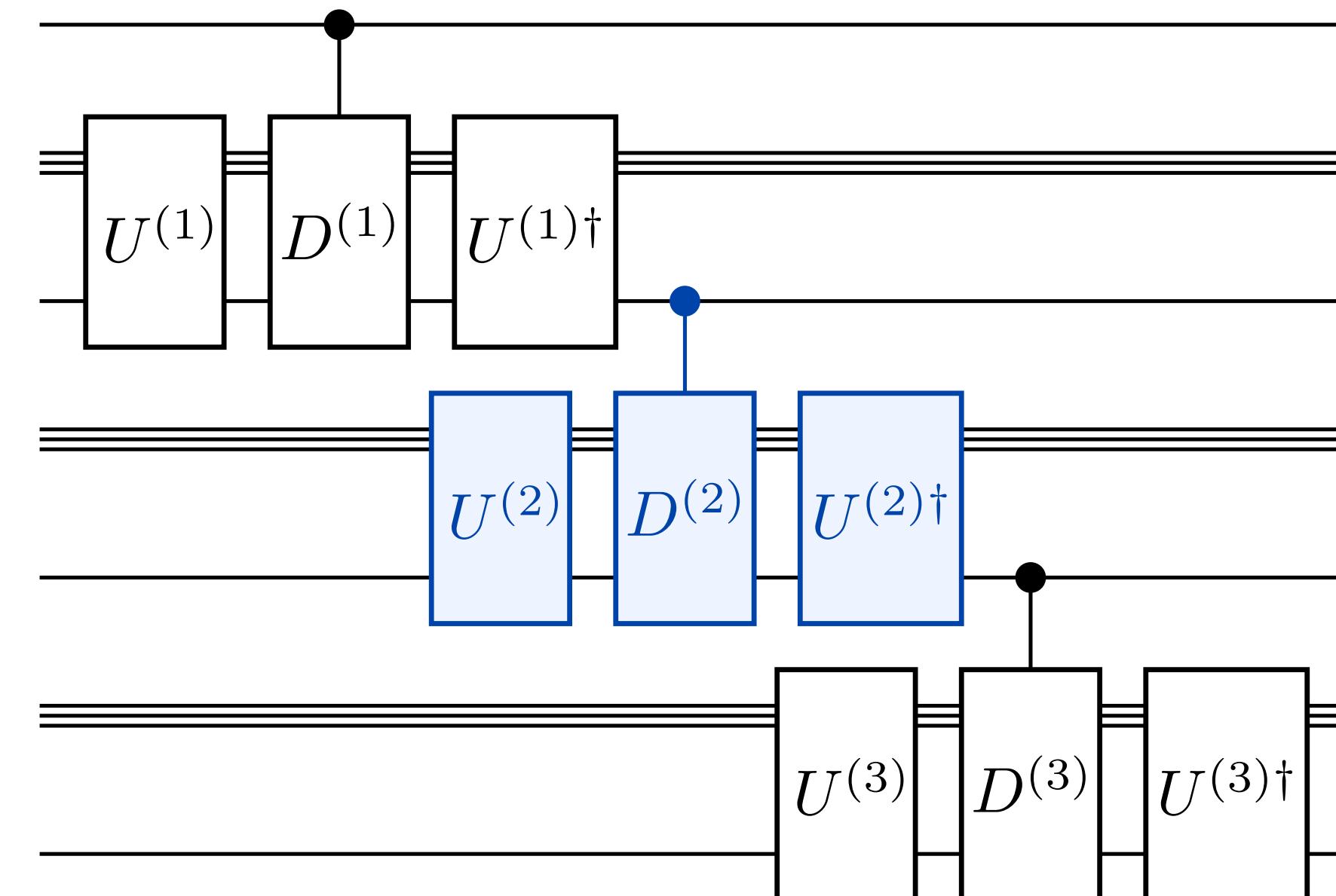
Quantum precomputation: some intuition

First attempt: diagonalization?

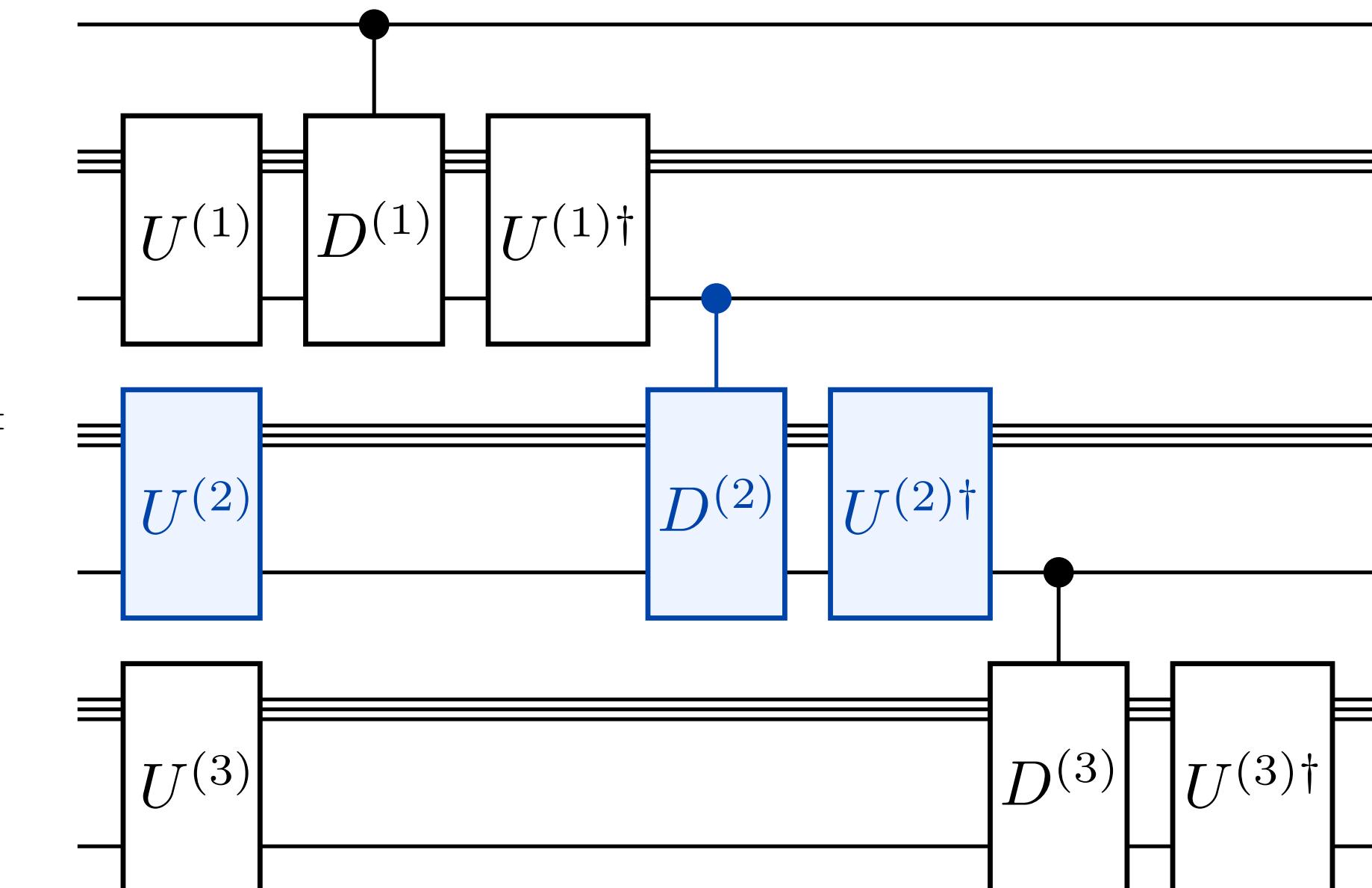
Original circuit



Diagonalized via $V^{(i)} = U^{(i)}D^{(i)}U^{(i)\dagger}$



Rearrange



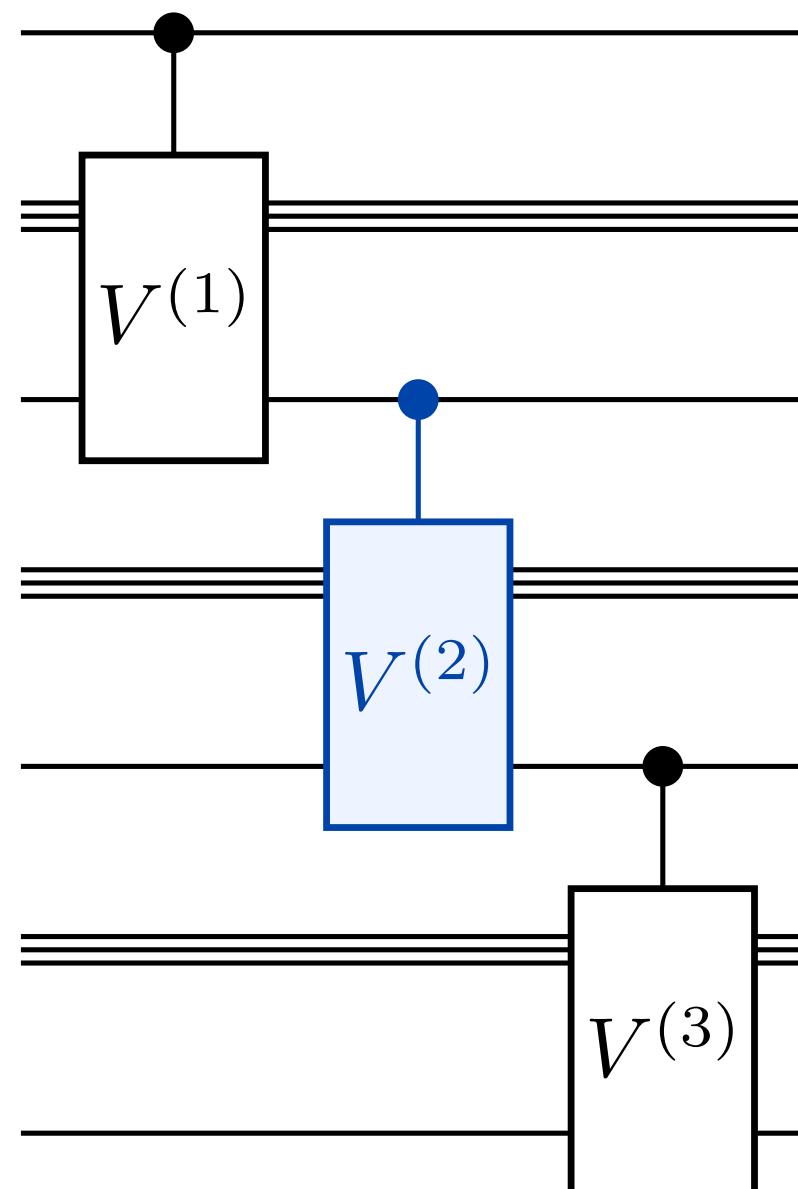
“Precomputation”

4^k

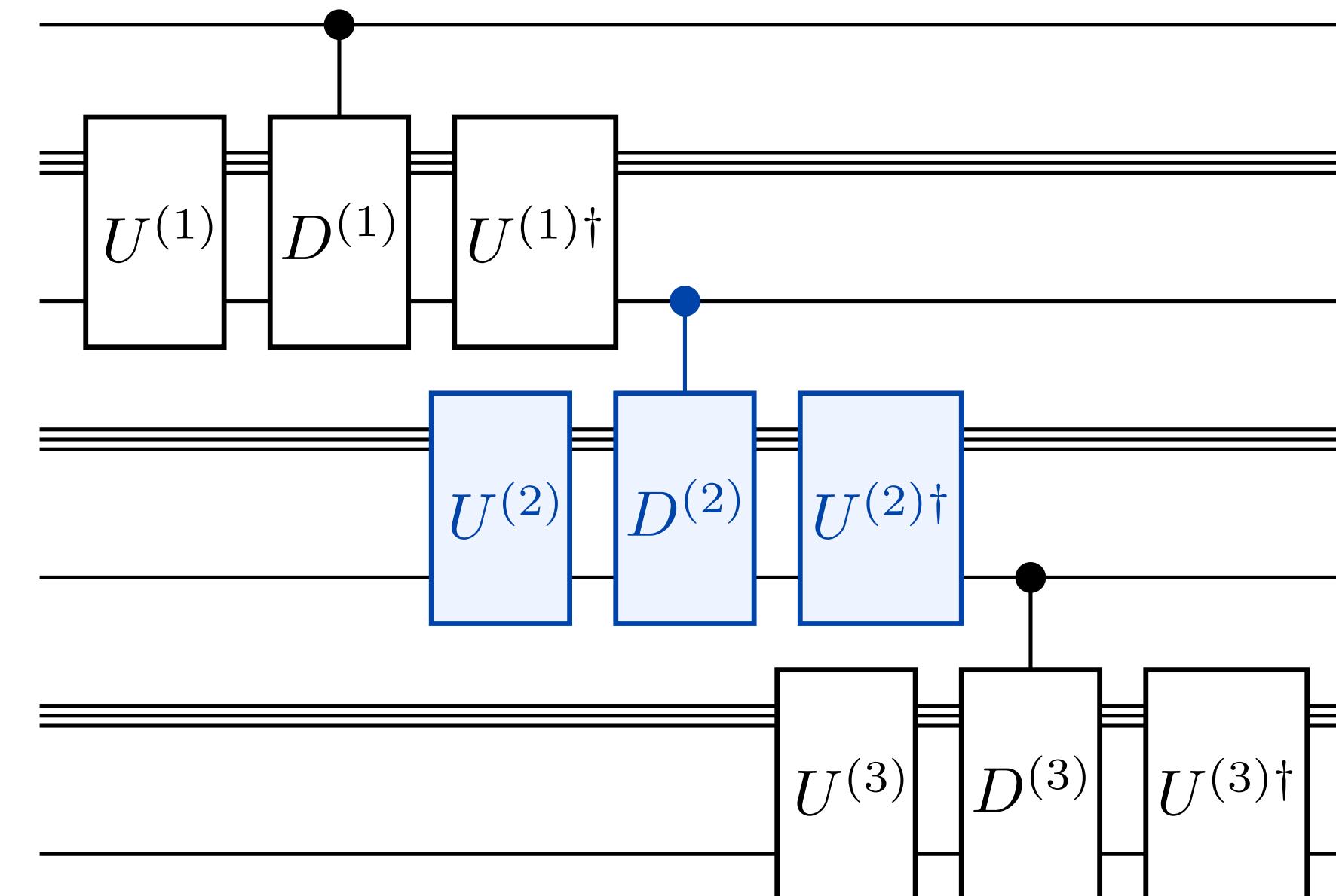
Quantum precomputation: some intuition

First attempt: diagonalization?

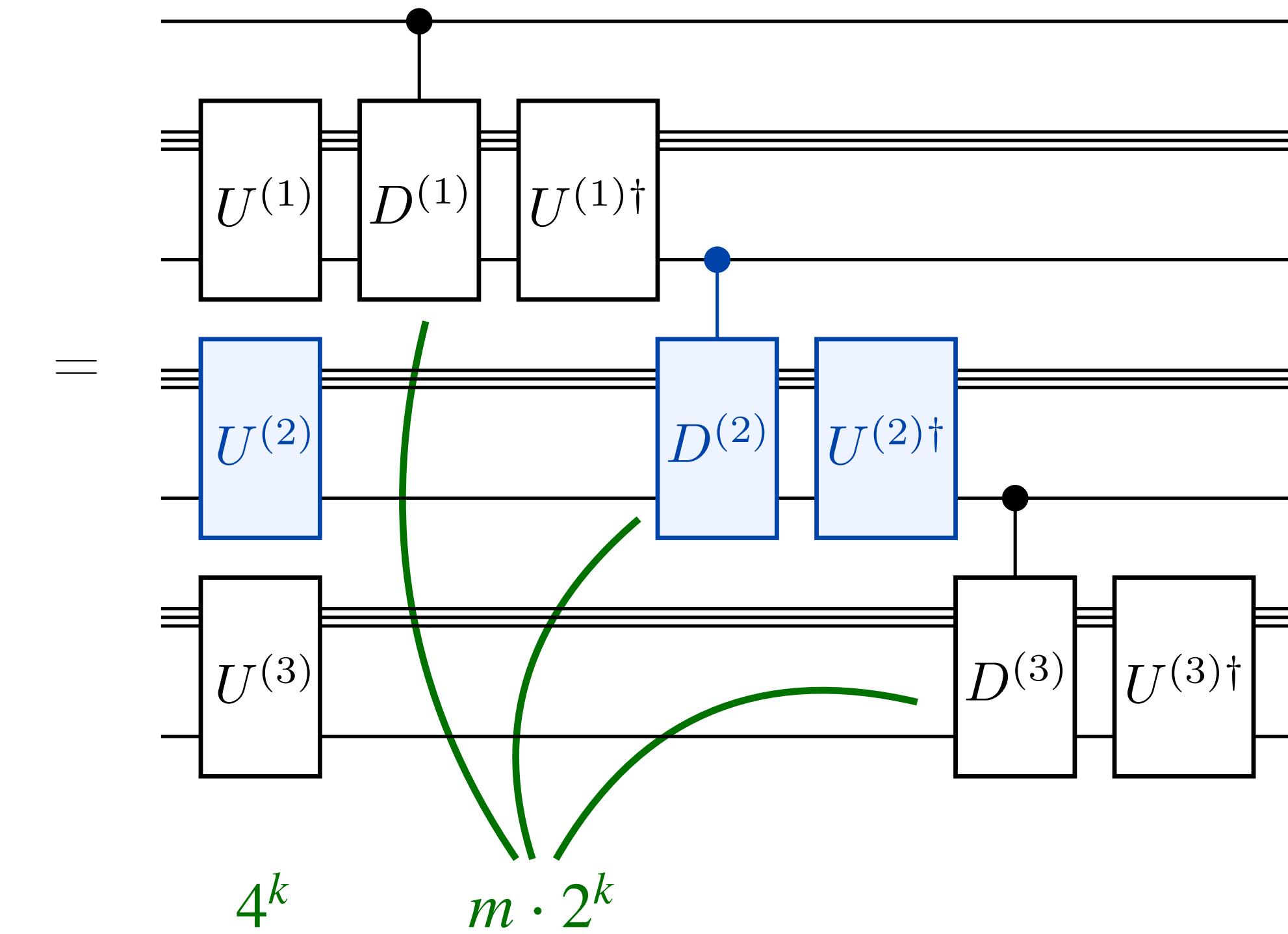
Original circuit



Diagonalized via $V^{(i)} = U^{(i)}D^{(i)}U^{(i)\dagger}$



Rearrange



4^k

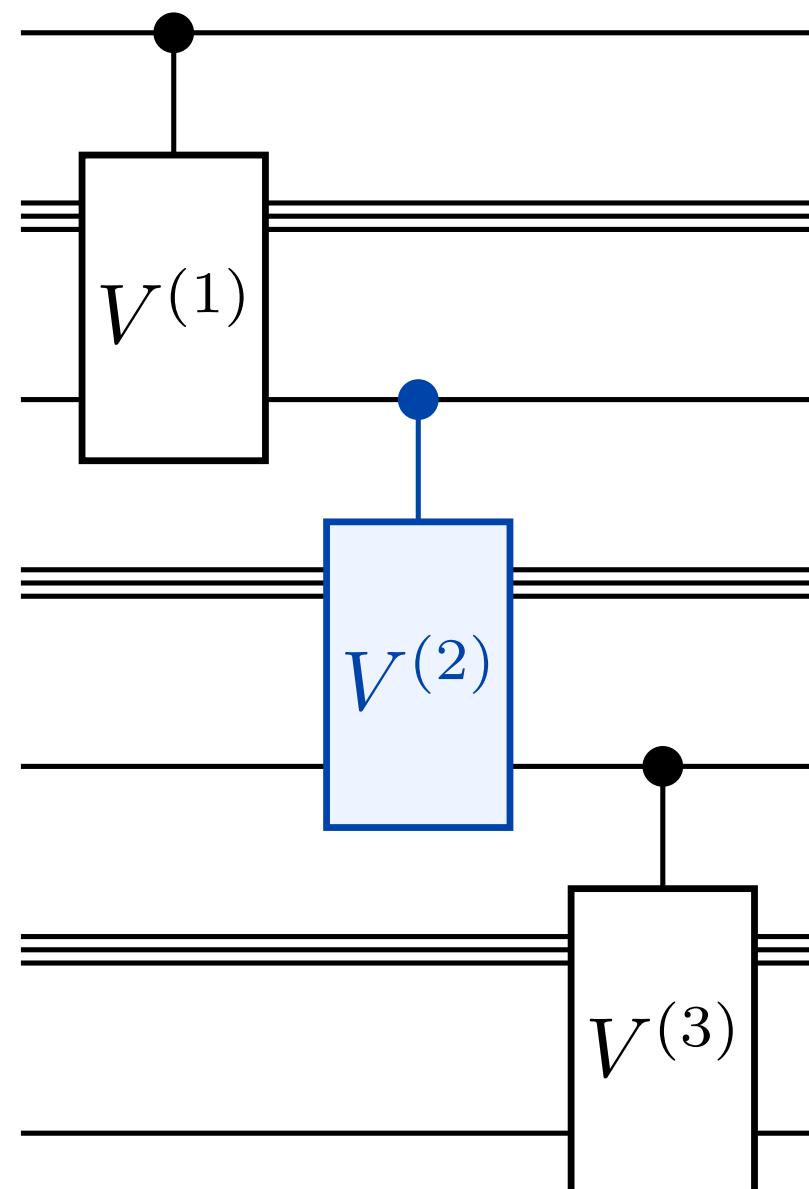
$m \cdot 2^k$

“Precomputation”

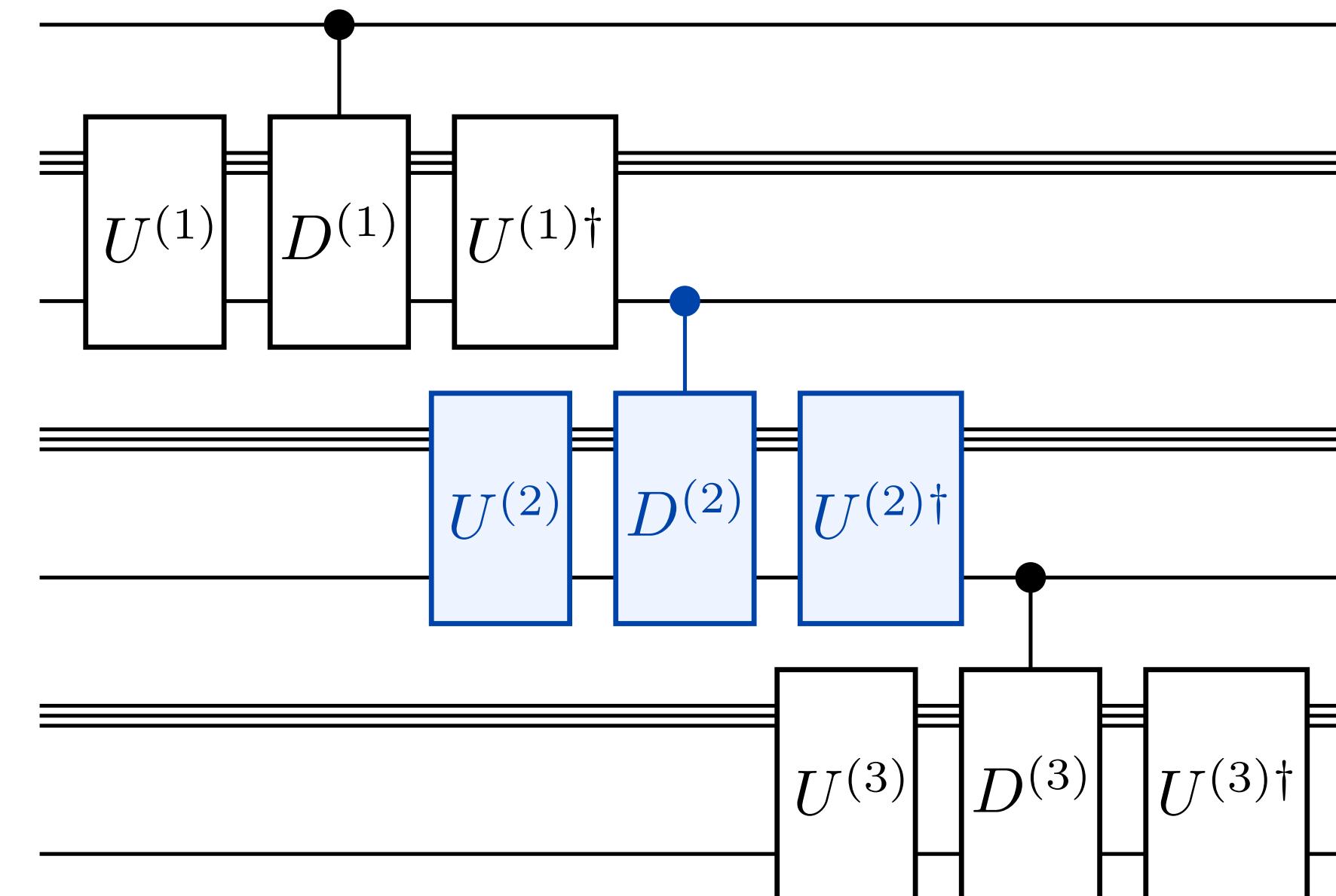
Quantum precomputation: some intuition

First attempt: diagonalization?

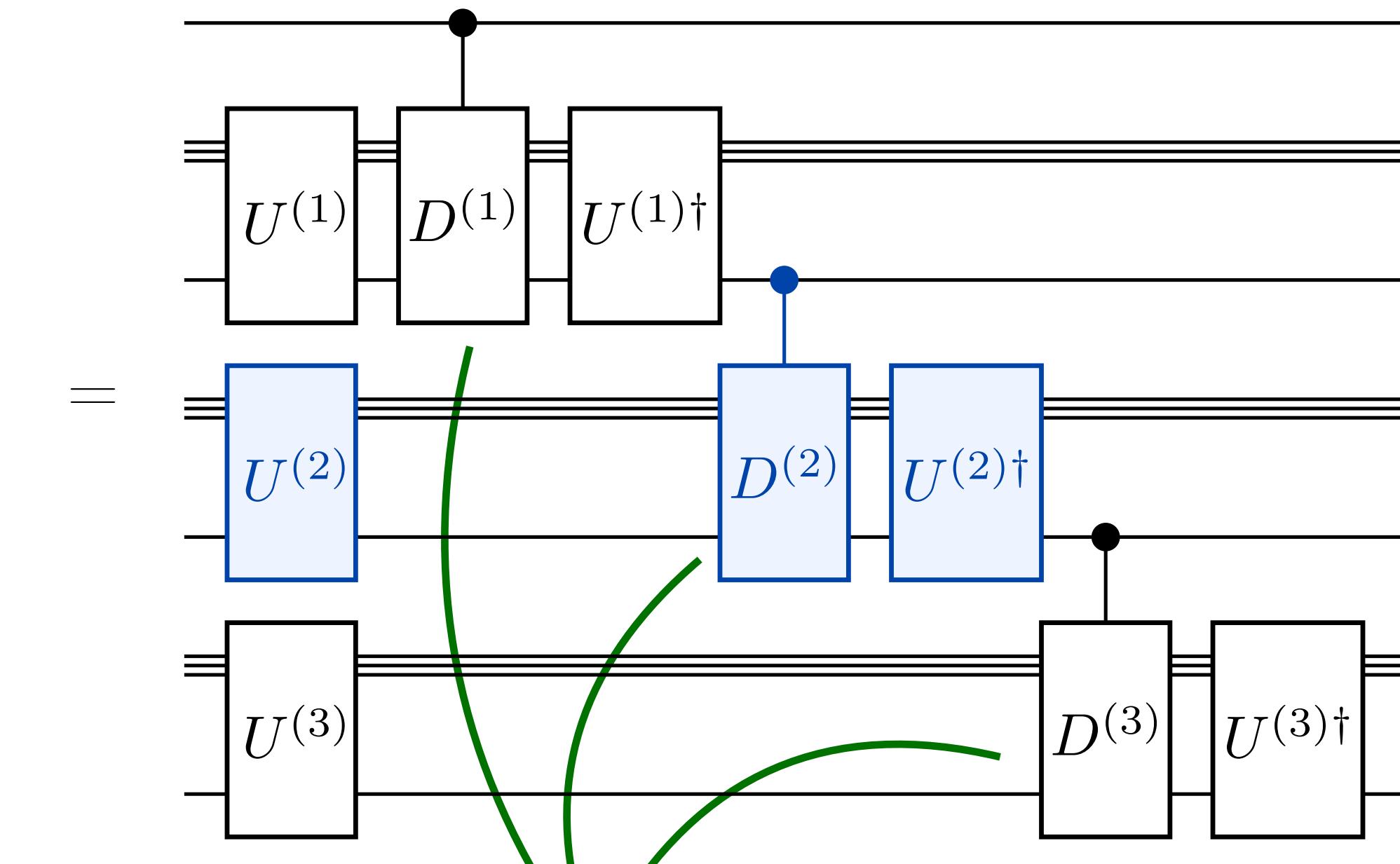
Original circuit



Diagonalized via $V^{(i)} = U^{(i)}D^{(i)}U^{(i)\dagger}$



Rearrange



“Precomputation”

4^k

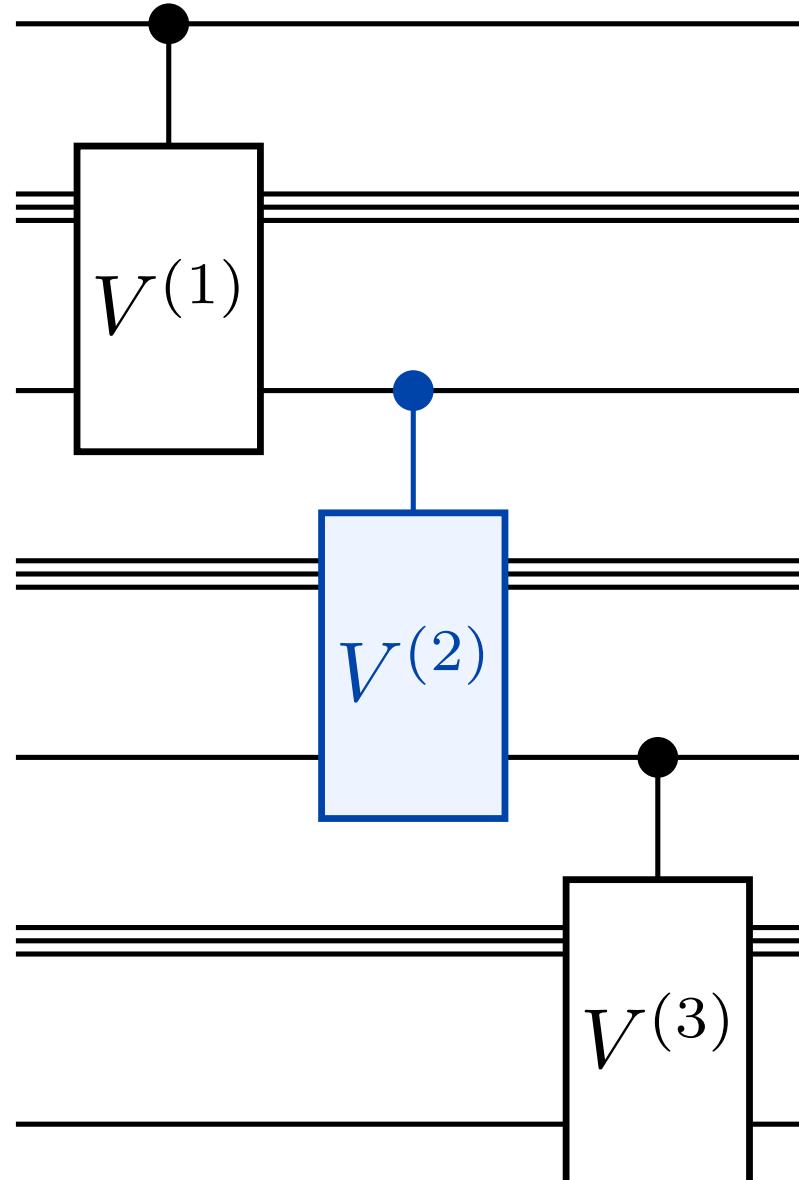
$m \cdot 2^k$

Improvement!

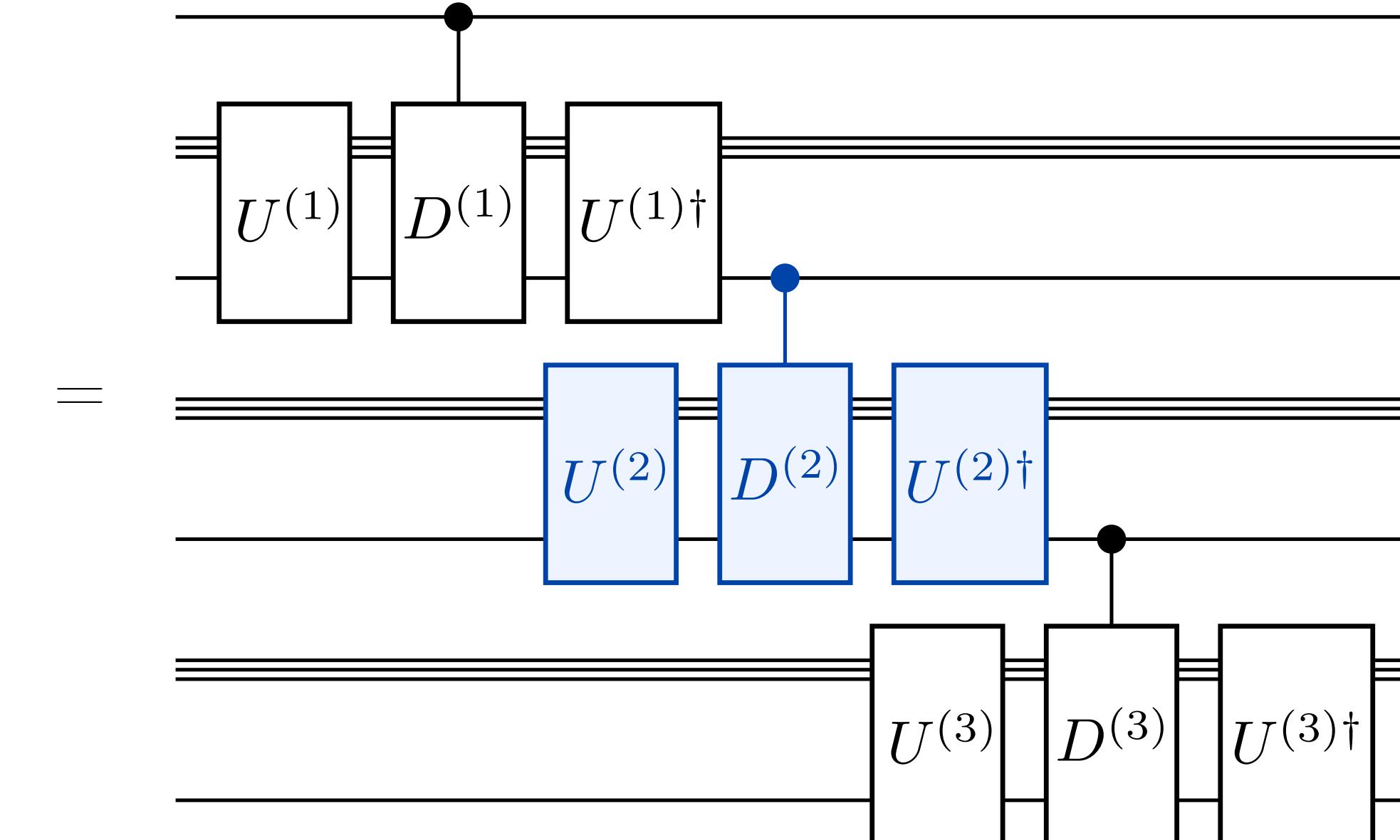
Quantum precomputation: some intuition

First attempt: diagonalization?

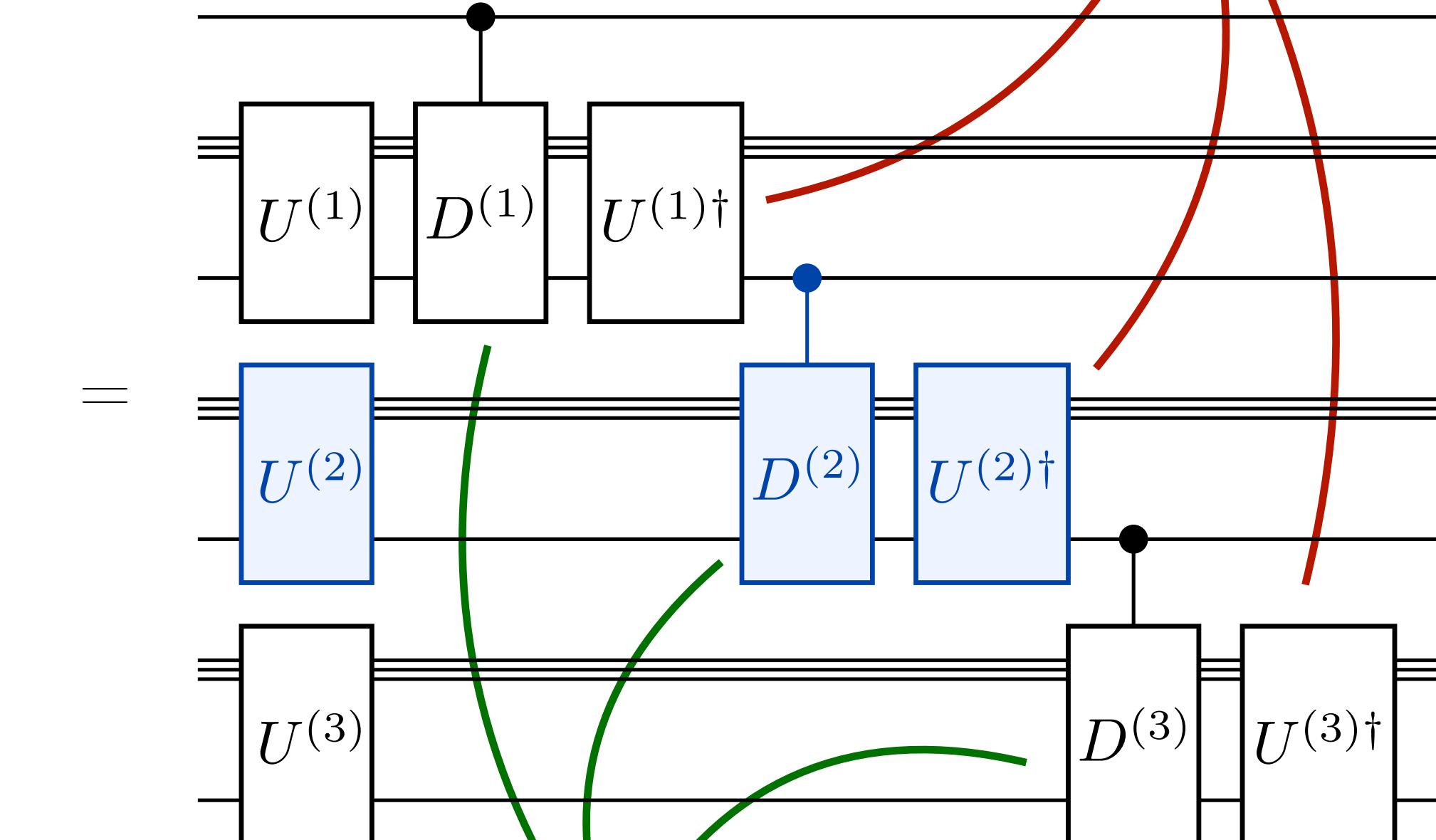
Original circuit



Diagonalized via $V^{(i)} = U^{(i)}D^{(i)}U^{(i)\dagger}$



Rearrange



“Precomputation”

4^k

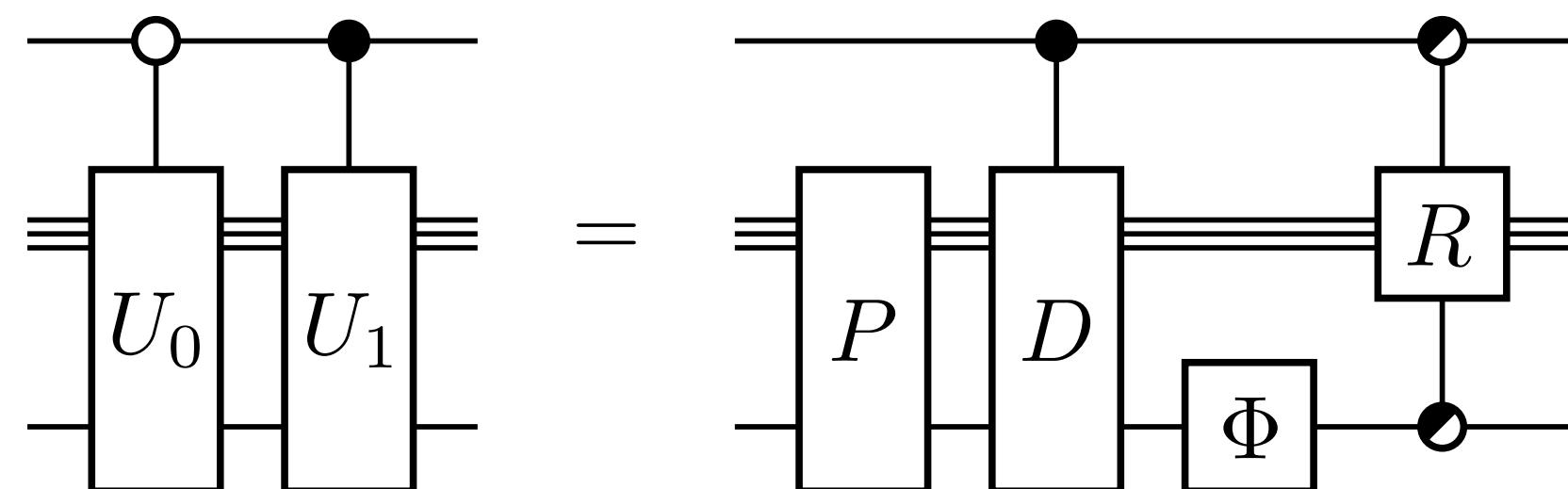
$m \cdot 2^k$

Improvement!

Quantum precomputation: a better identity

Quantum precomputation: a better identity

Lemma (Precomputation identity). For any many-qubit U_0, U_1 , there are P , diagonal D , and R such that

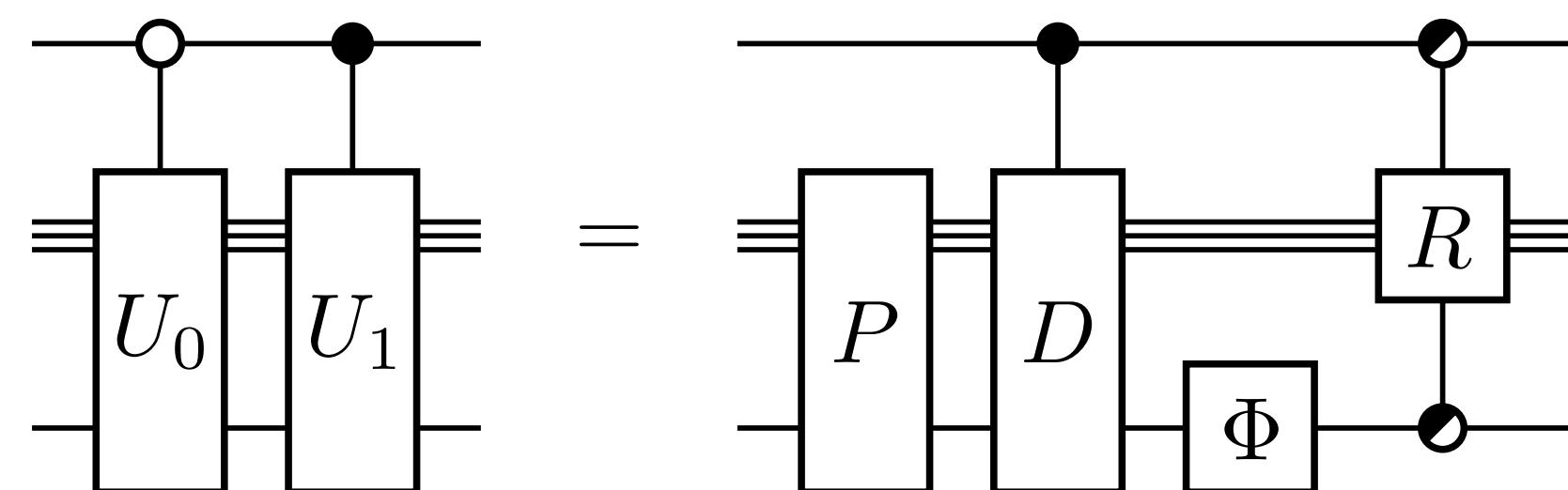
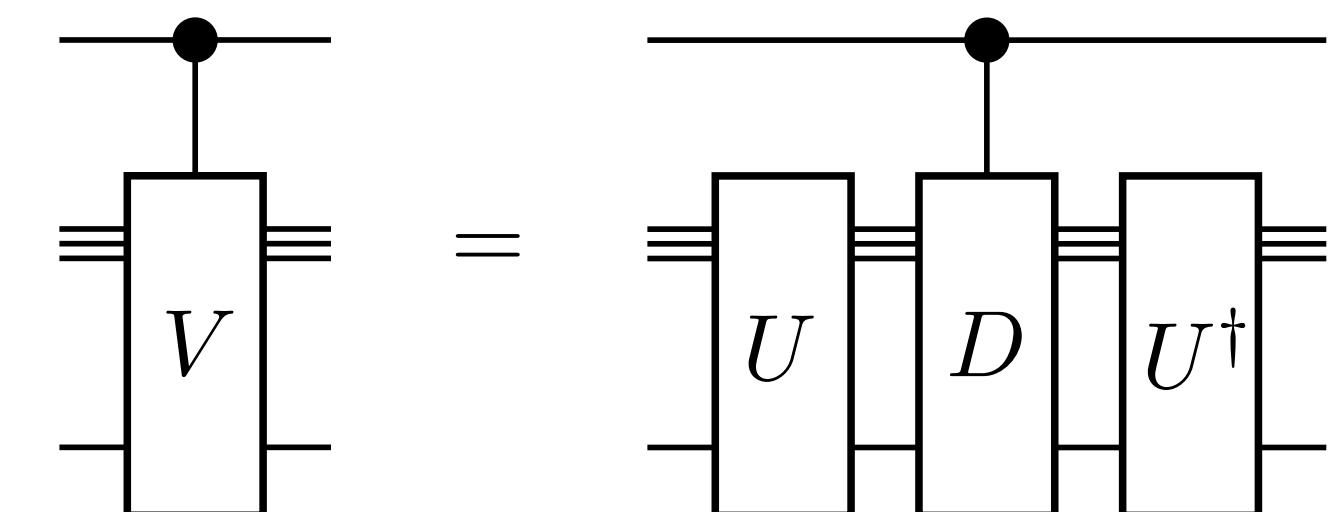


where Φ a universal (fixed) unitary.

Quantum precomputation: a better identity

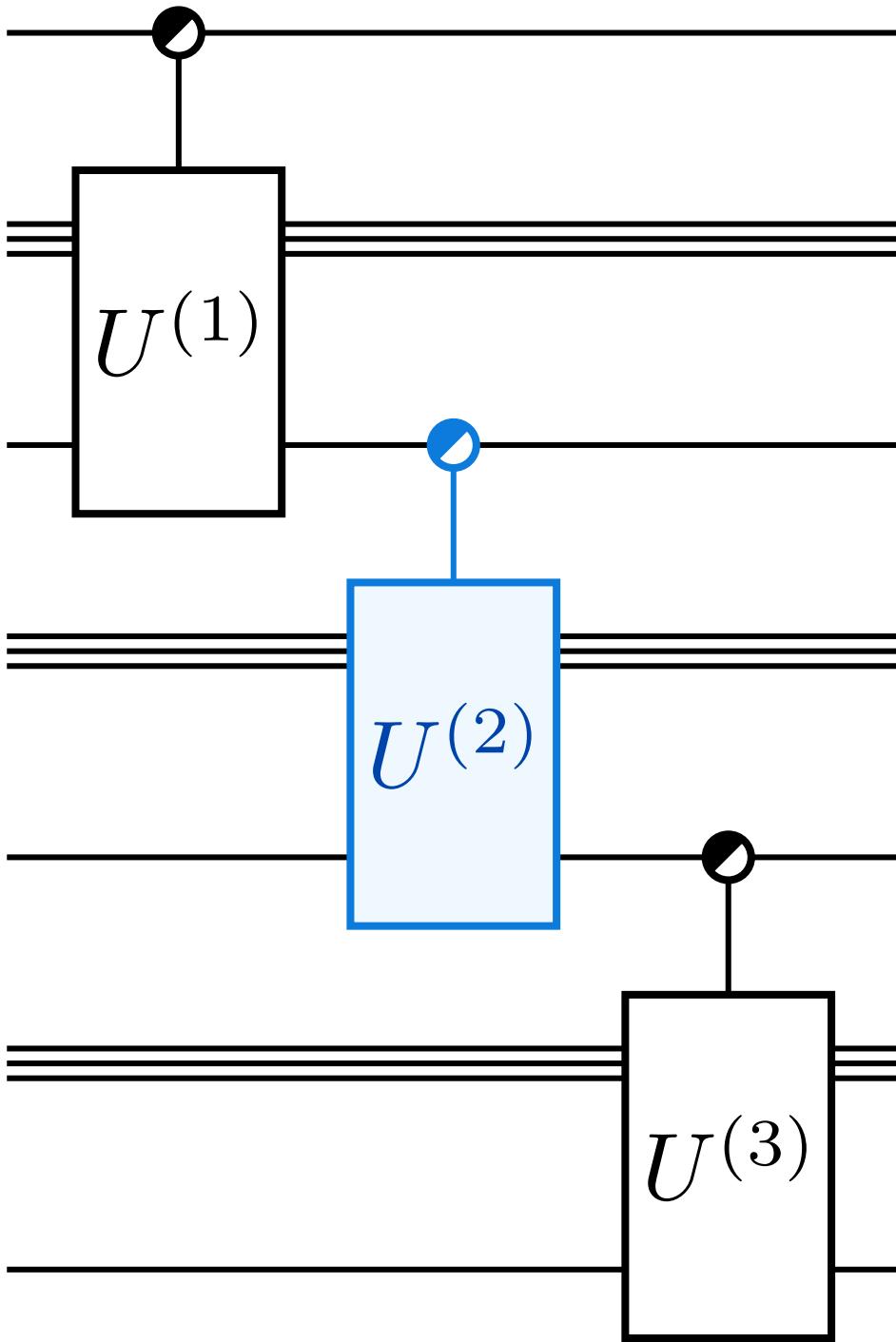
Lemma (Precomputation identity). For any many-qubit U_0, U_1 , there are P , diagonal D , and R such that

C.f. Naive diagonalization

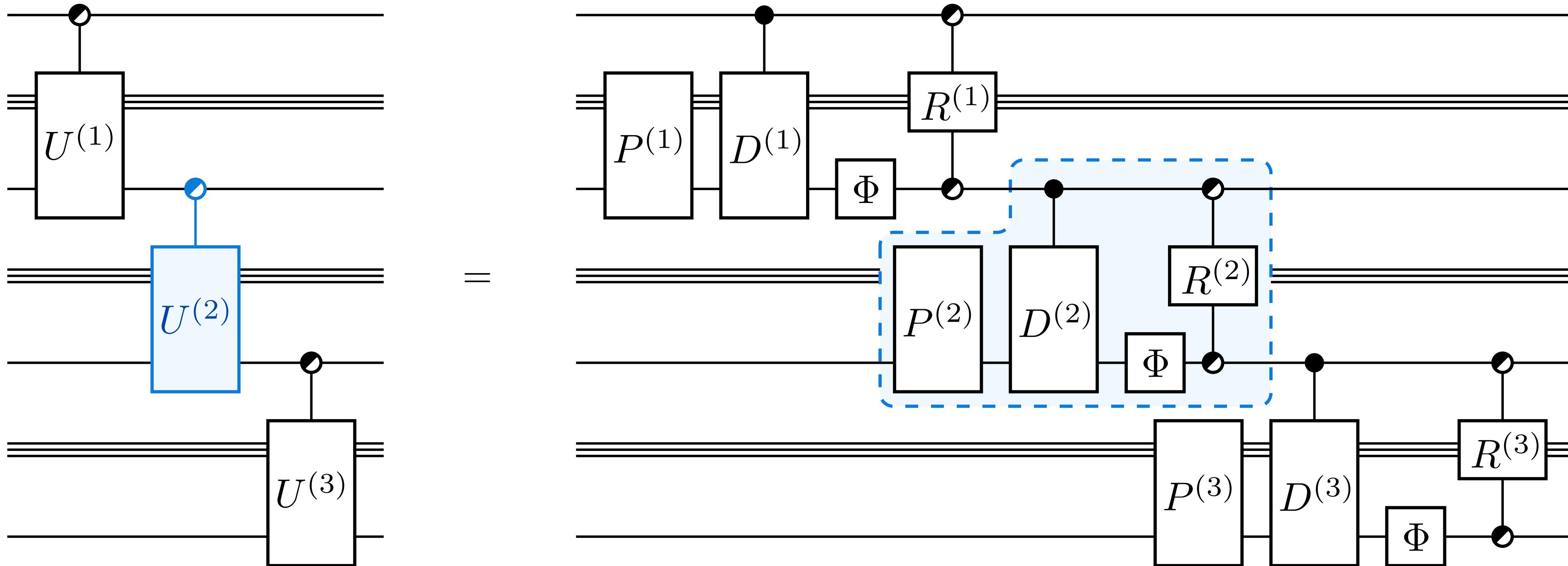


where Φ a universal (fixed) unitary.

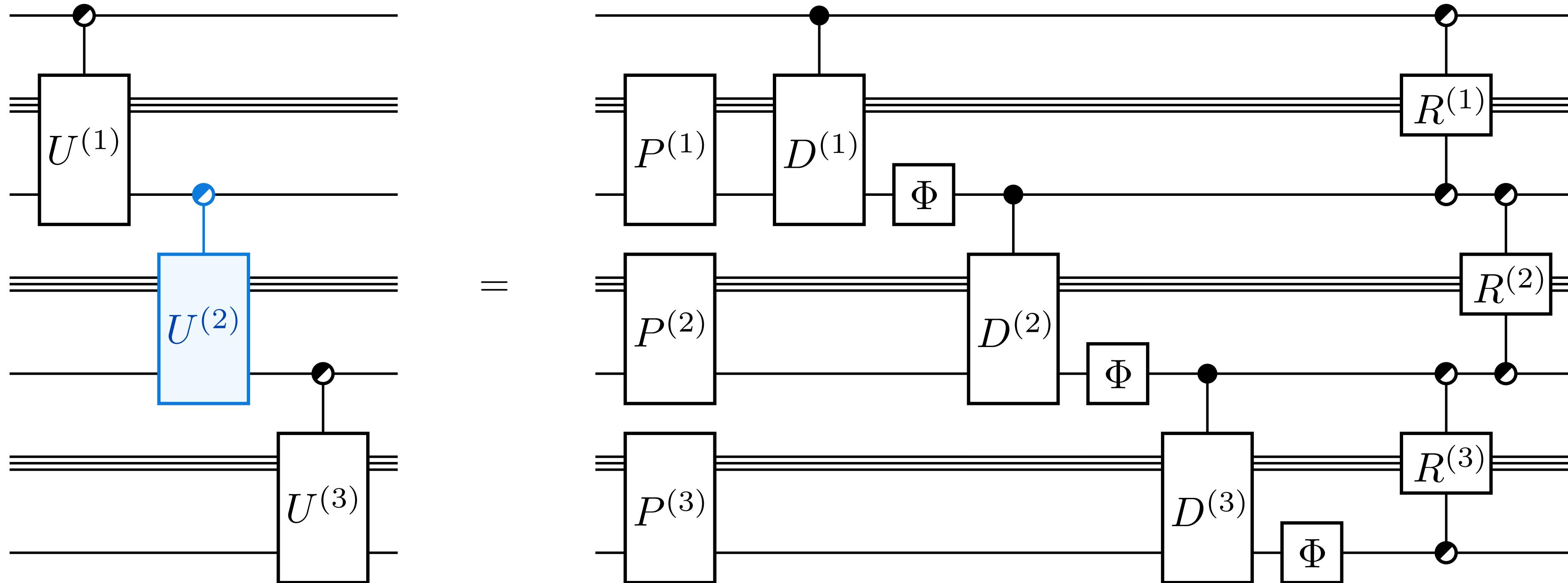
Quantum precomputation: applying the identity



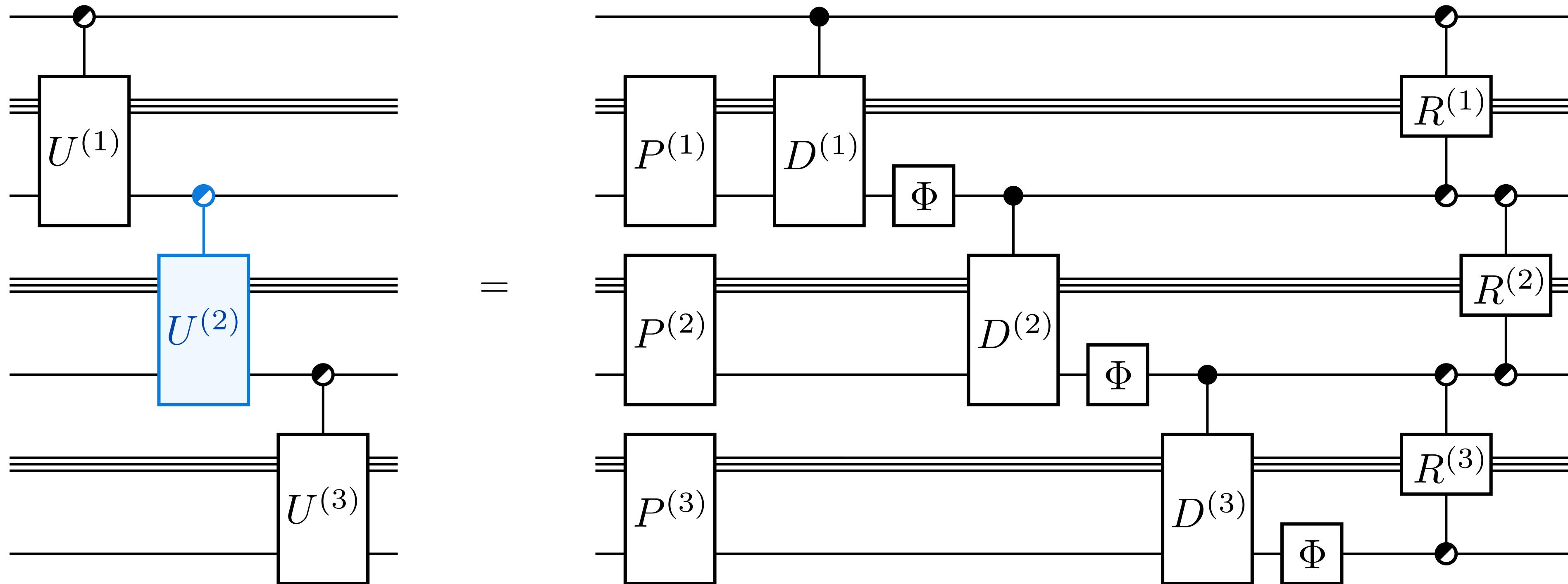
Quantum precomputation: applying the identity



Quantum precomputation: applying the identity

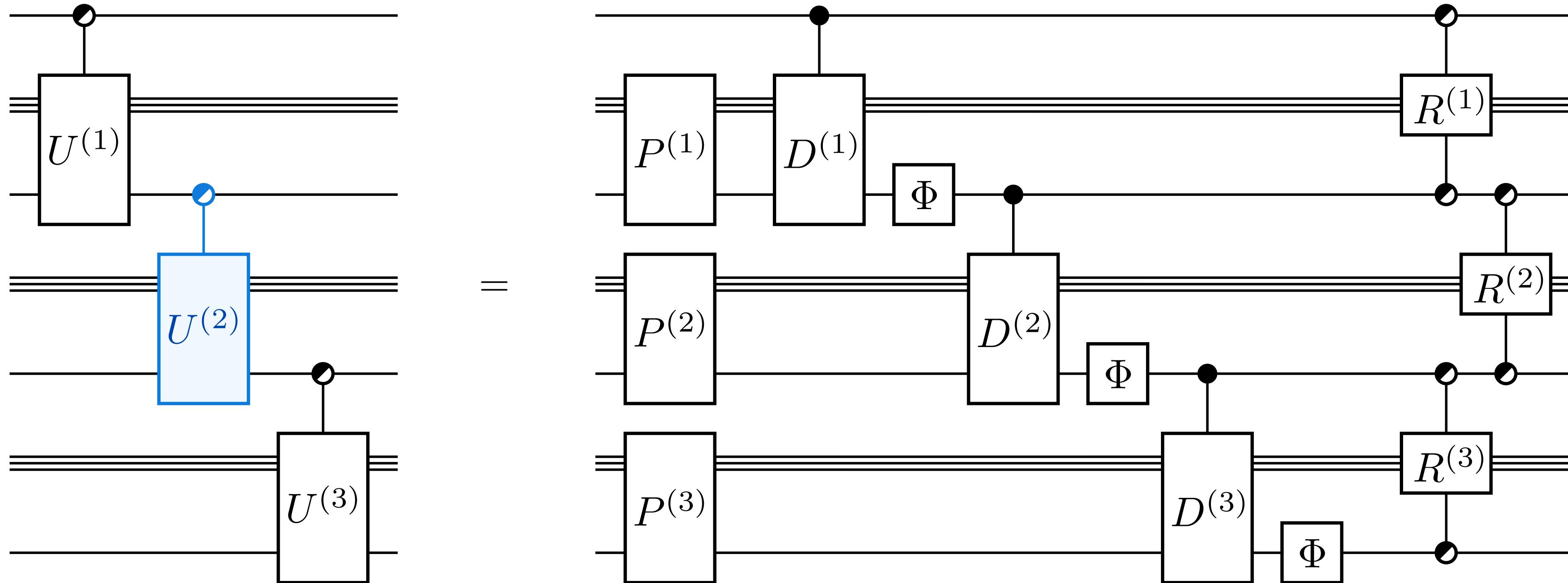


Quantum precomputation: applying the identity



Original circuit: $O(m4^k)$ depth

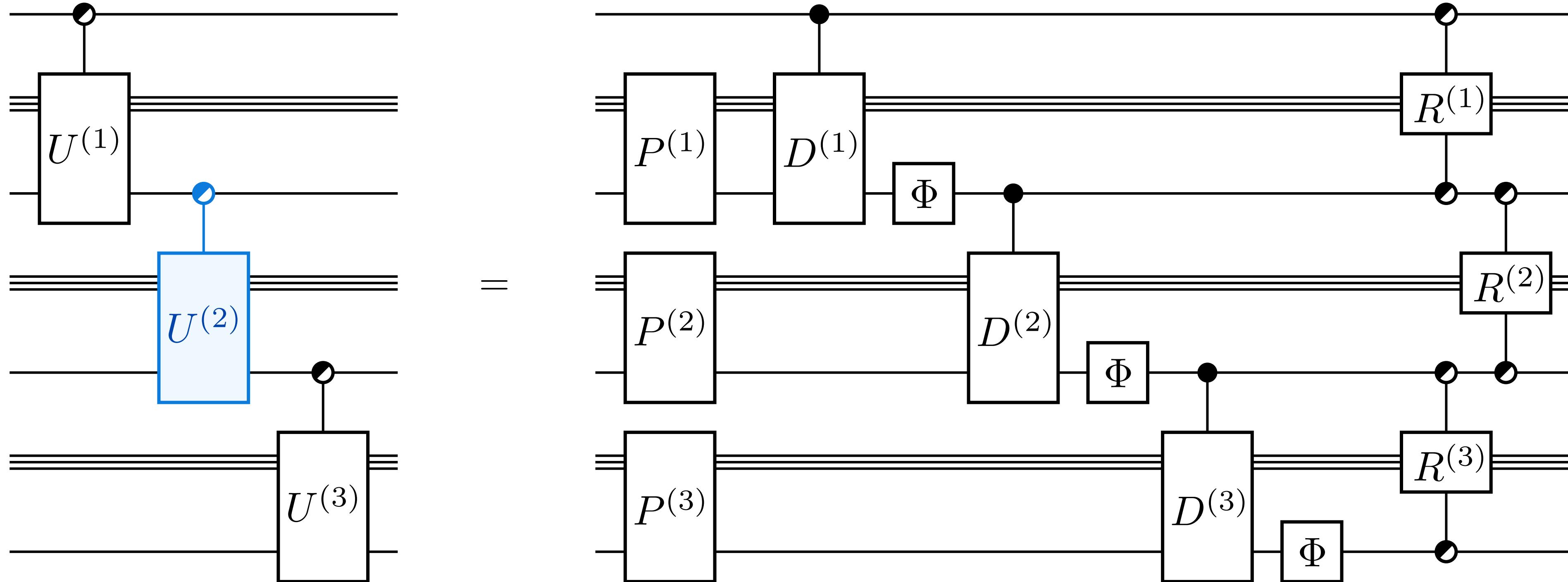
Quantum precomputation: applying the identity



Original circuit: $O(m4^k)$ depth

New circuit: $O(4^k + m2^k)$ depth

Quantum precomputation: applying the identity

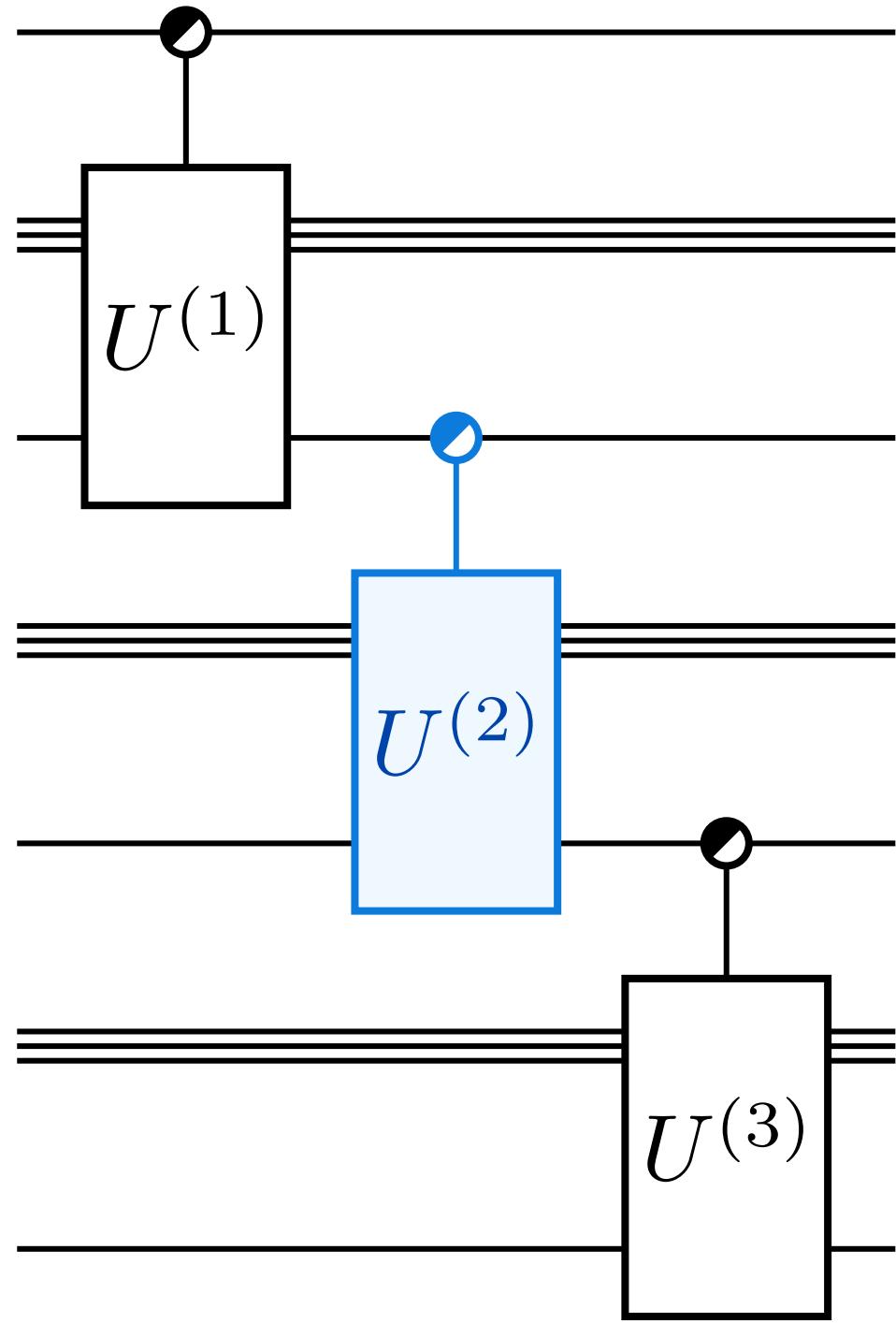


Original circuit: $O(m4^k)$ depth

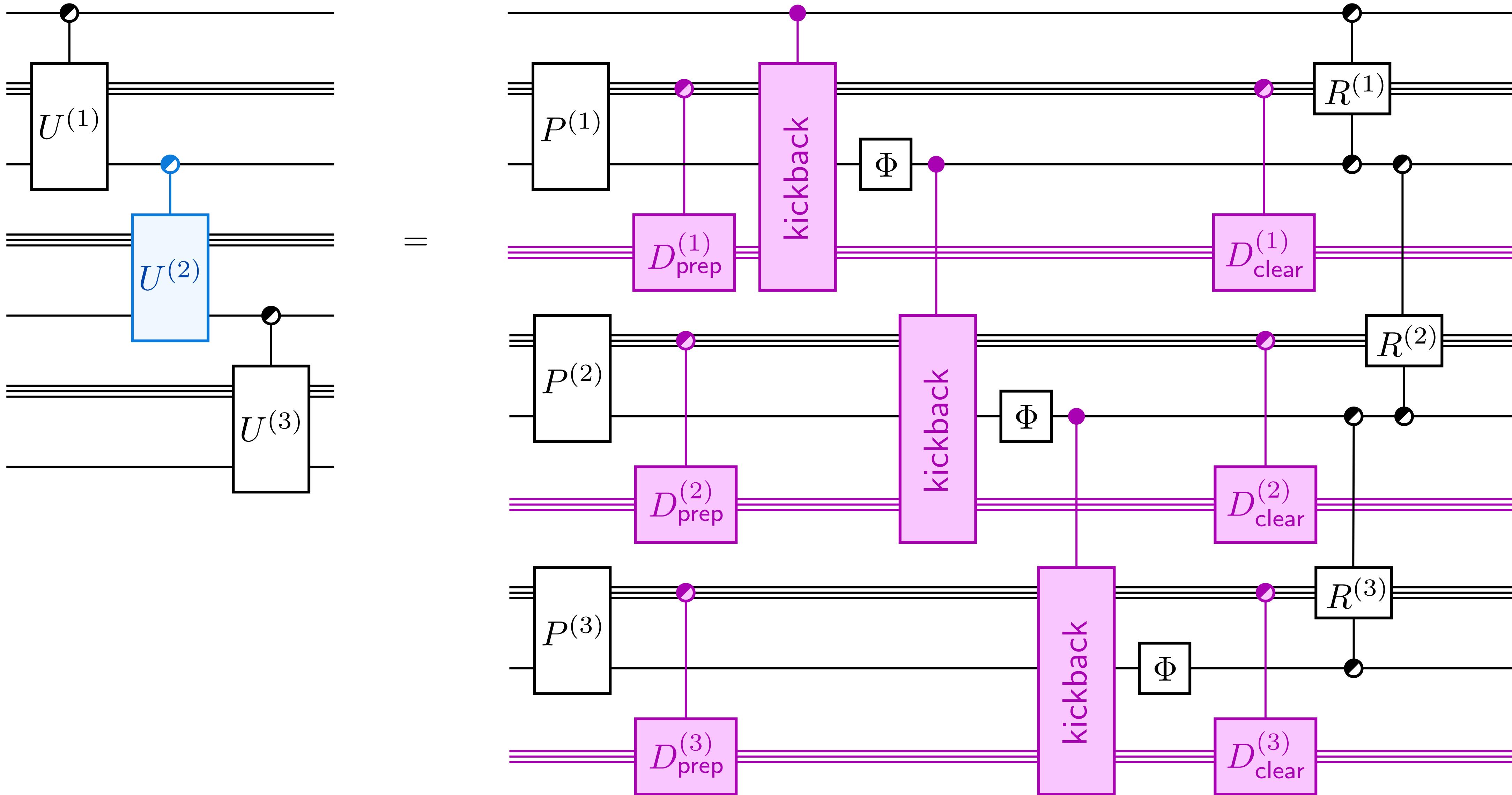
New circuit: $O(4^k + m2^k)$ depth

Example. Put $m = n, k = \log(n)$. Then depths are $O(n^3)$ (naive) vs. $O(n^2)$ (using precomputation)

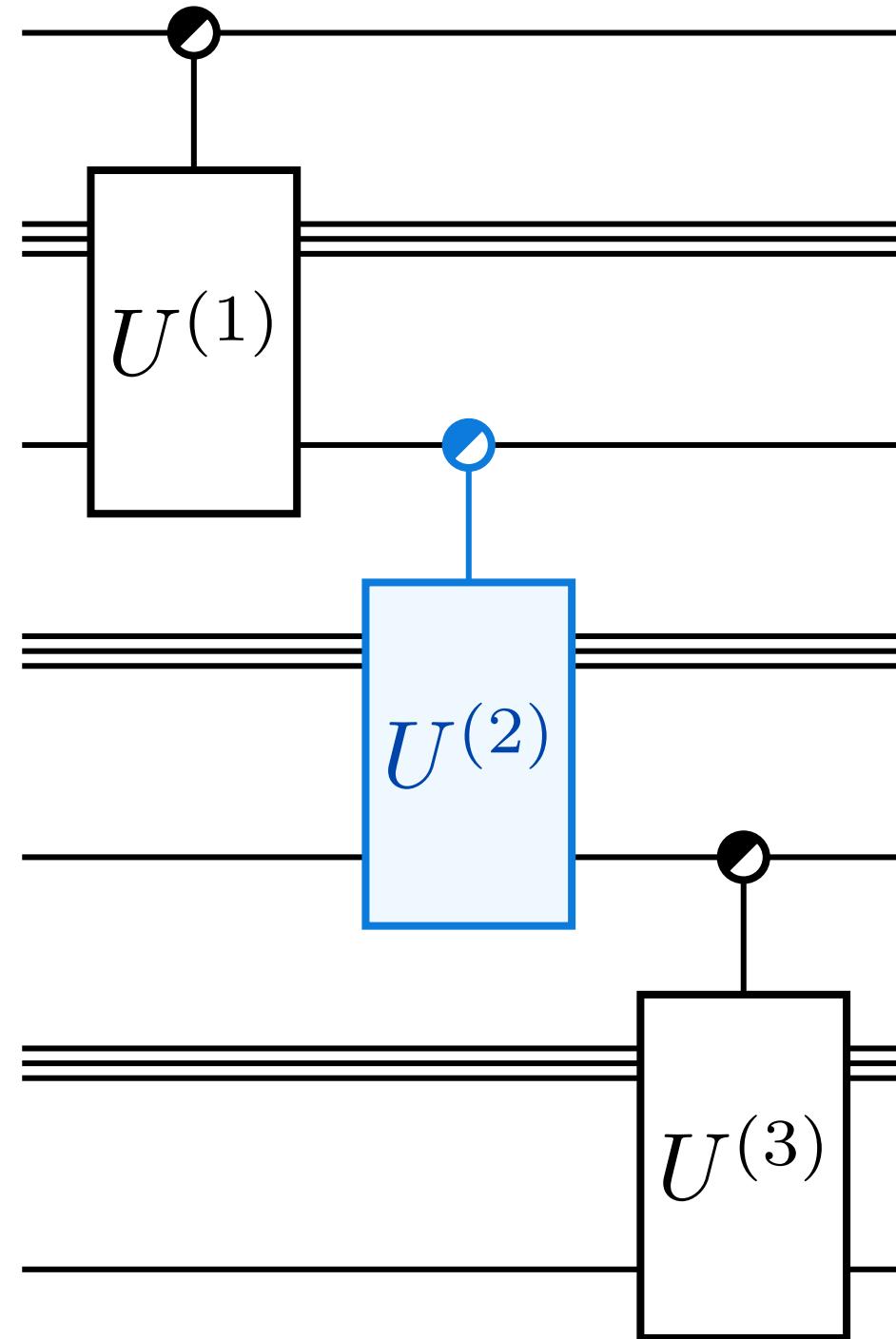
Quantum precomputation: with ancillae



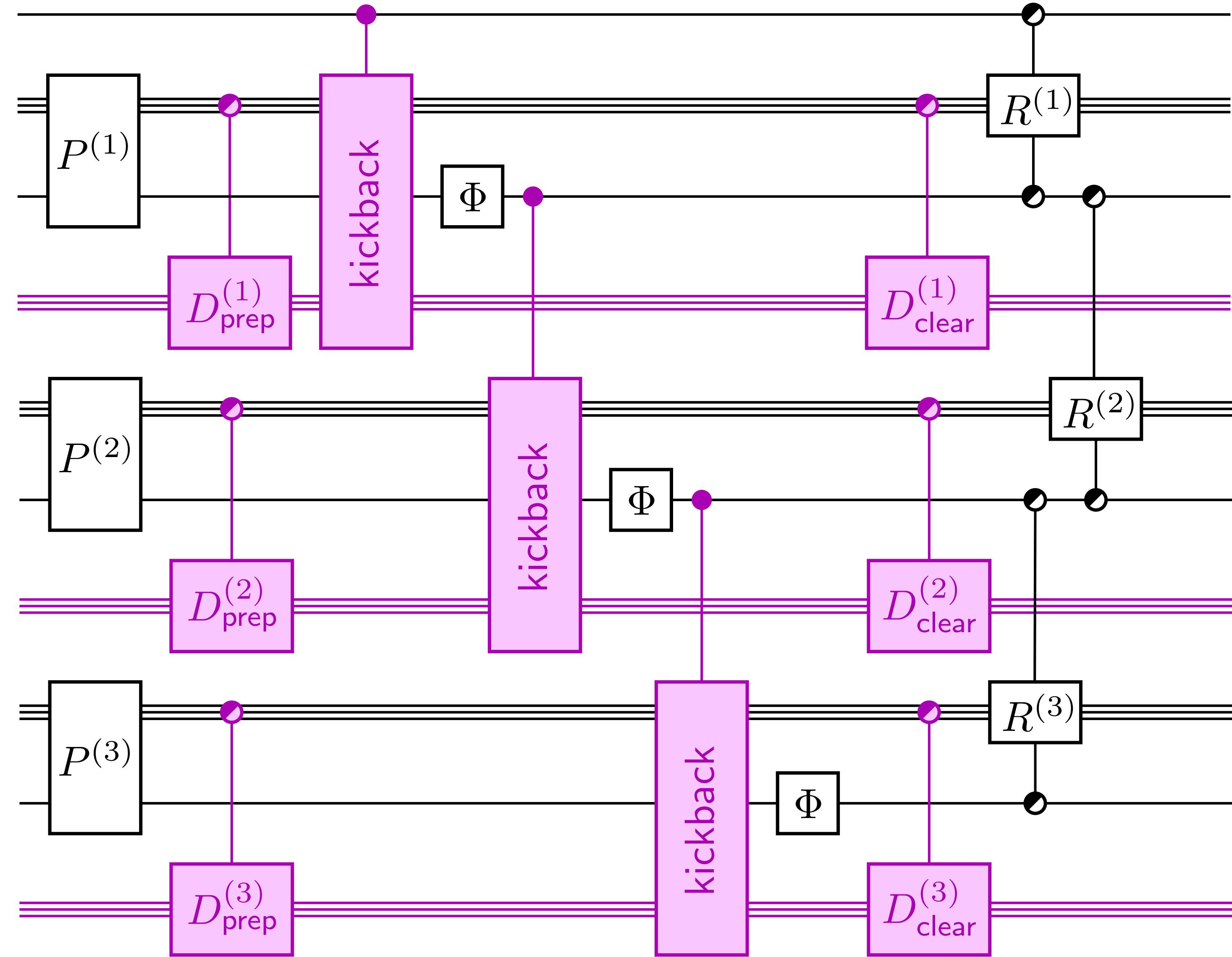
Quantum precomputation: with ancillae



Quantum precomputation: with ancillae

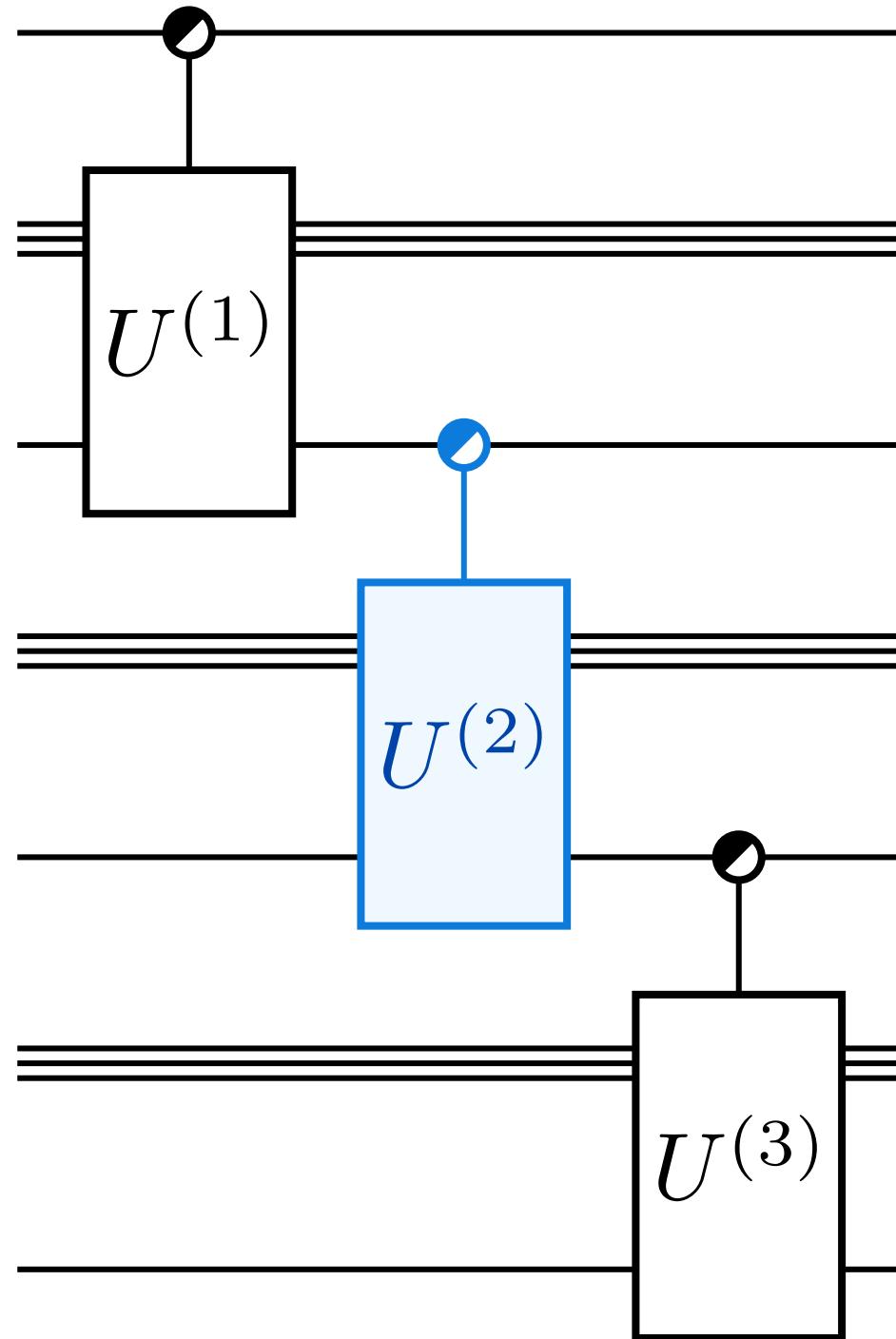


=

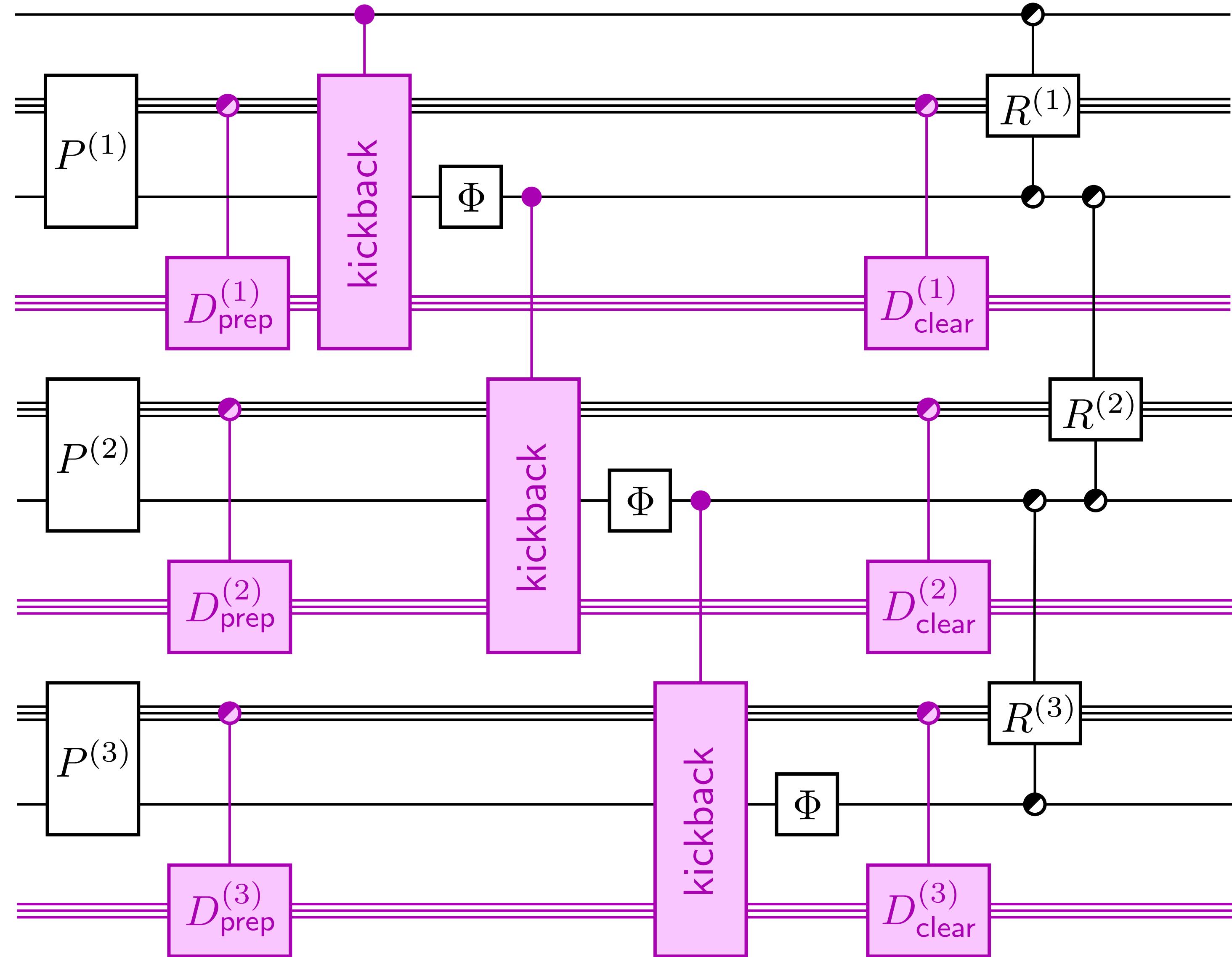


Original circuit: $O(m4^k)$ depth

Quantum precomputation: with ancillae



=



Original circuit: $O(m4^k)$ depth

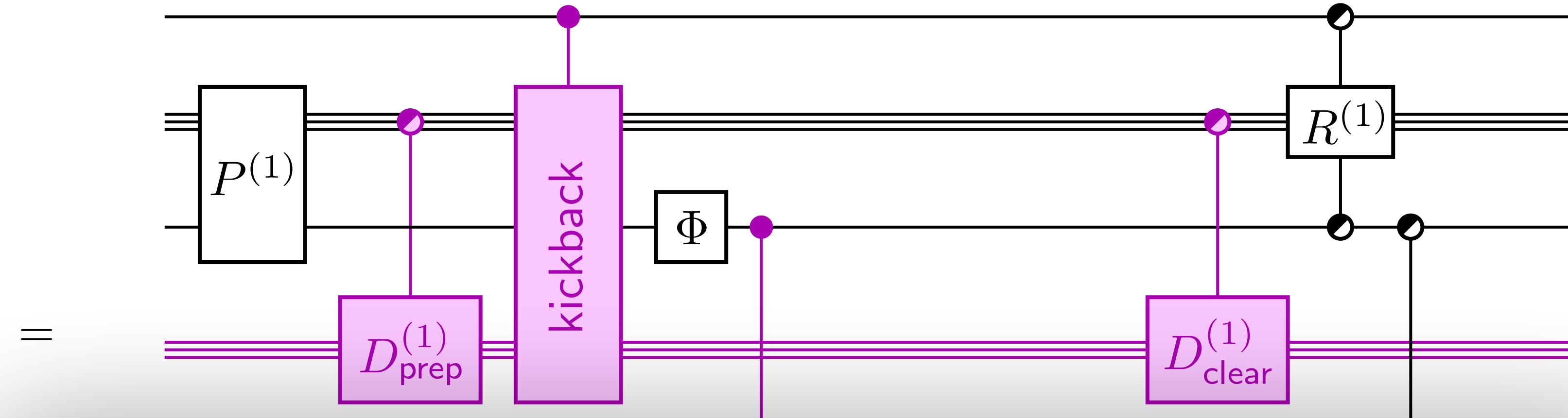
With ancillae: $O(2^{k/2} + mk)$ depth
using $O(m2^k)$ ancillae

Quantum precomputation: with ancillae

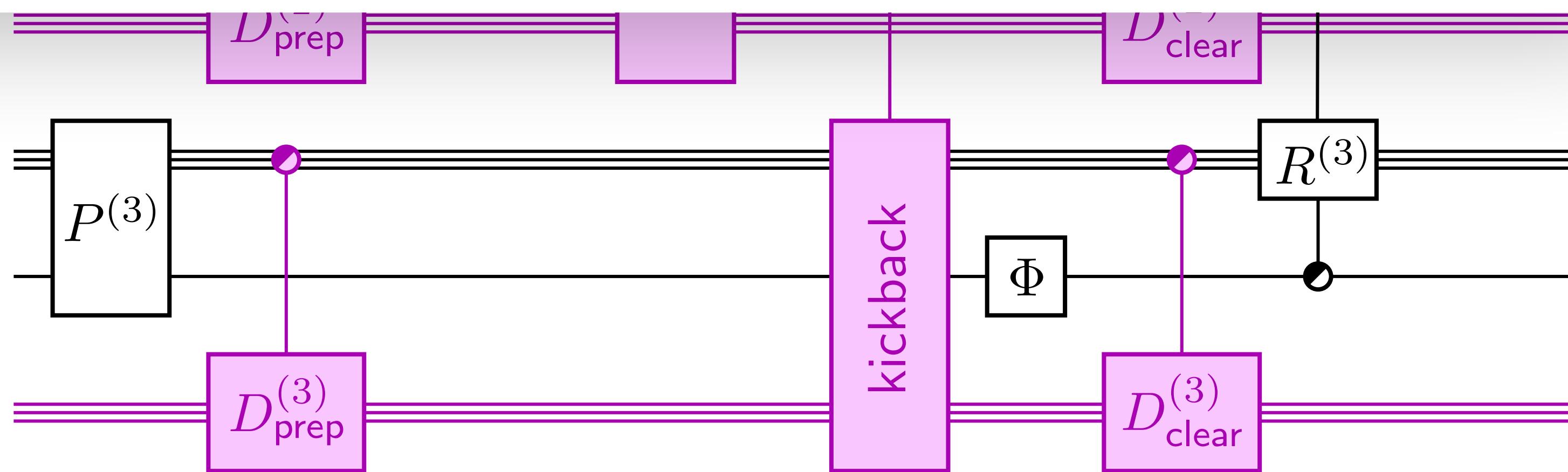


Original circuit: $O(m4^k)$ depth

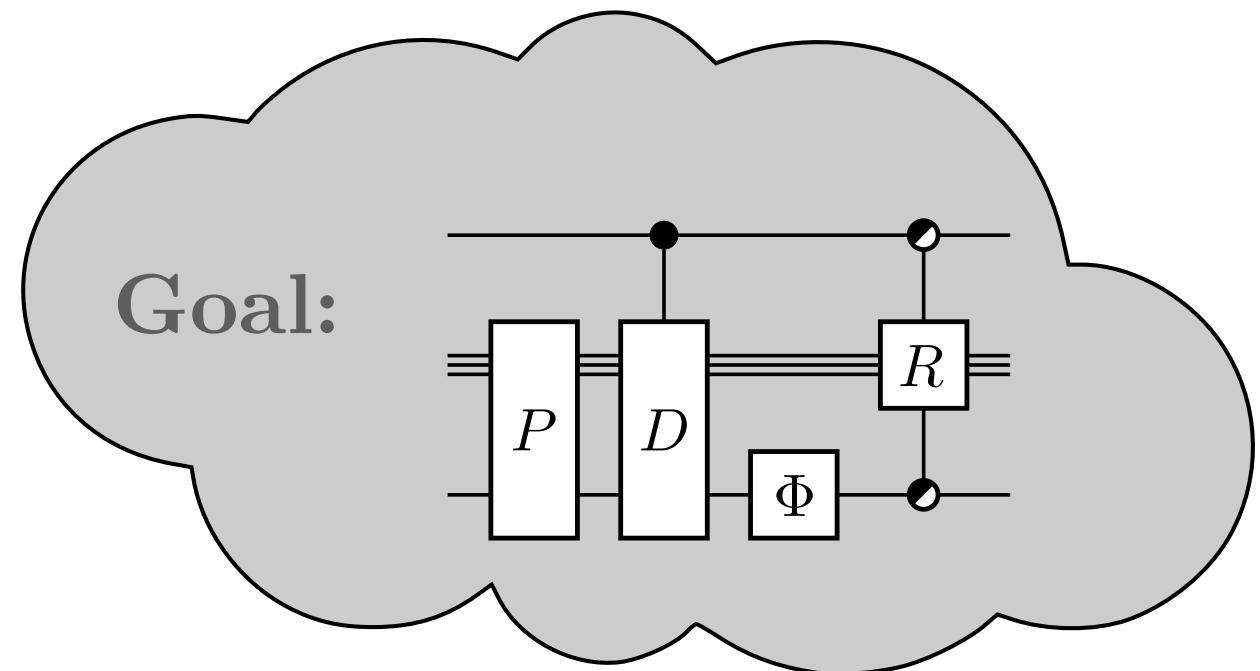
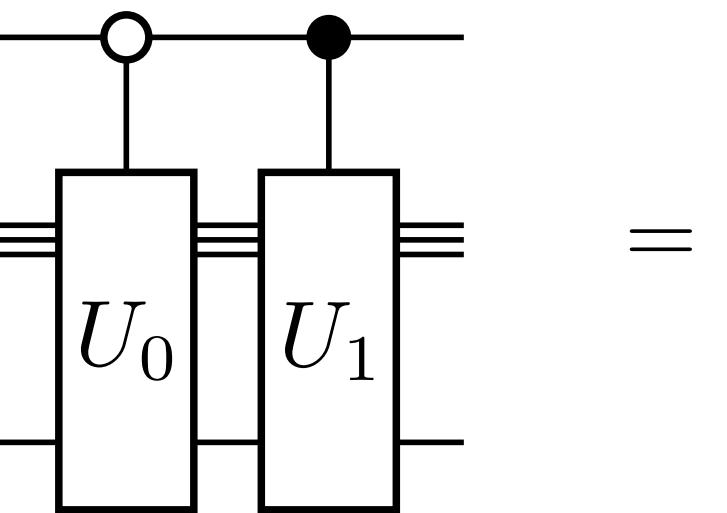
With ancillae: $O(2^{k/2} + mk)$ depth
using $O(m2^k)$ ancillae



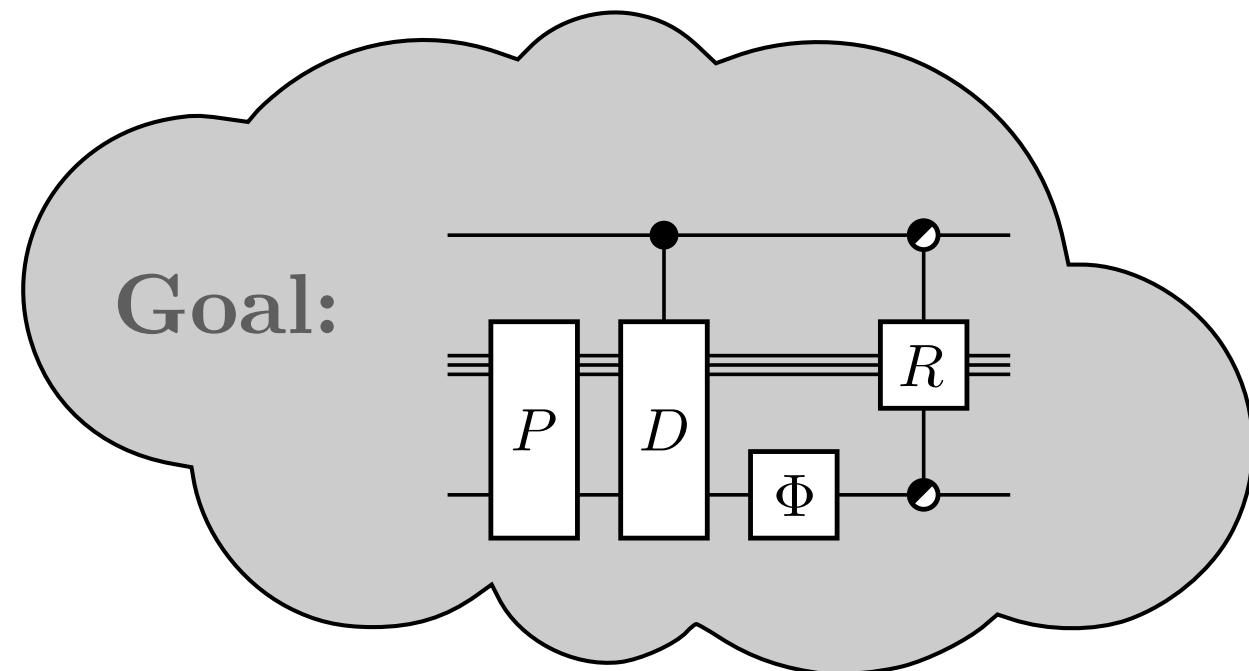
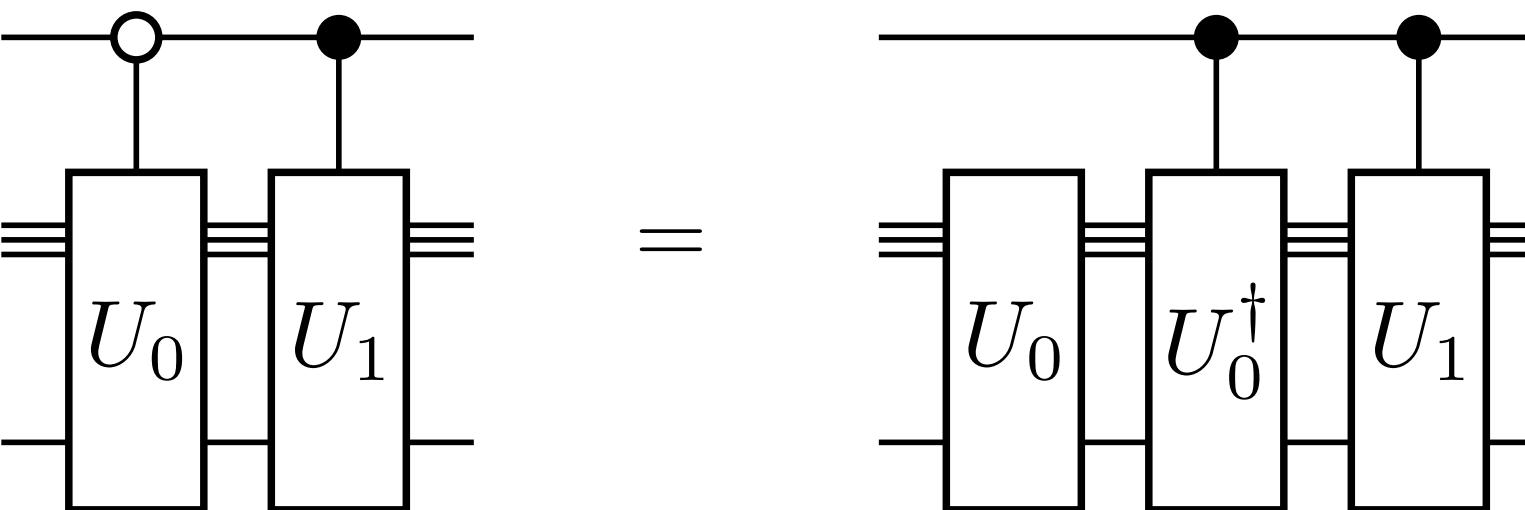
Example corollary. For all $(2 \log n)$ -qubit unitaries U_1, \dots, U_n , the unitary $C(U_1, \dots, U_n)$ has an exact circuit of depth $O(n \log n)$ using $O(n^{3/2})$ ancillae (vs. the naive depth of $\tilde{O}(n^2)$)



Precomputation identity: proof

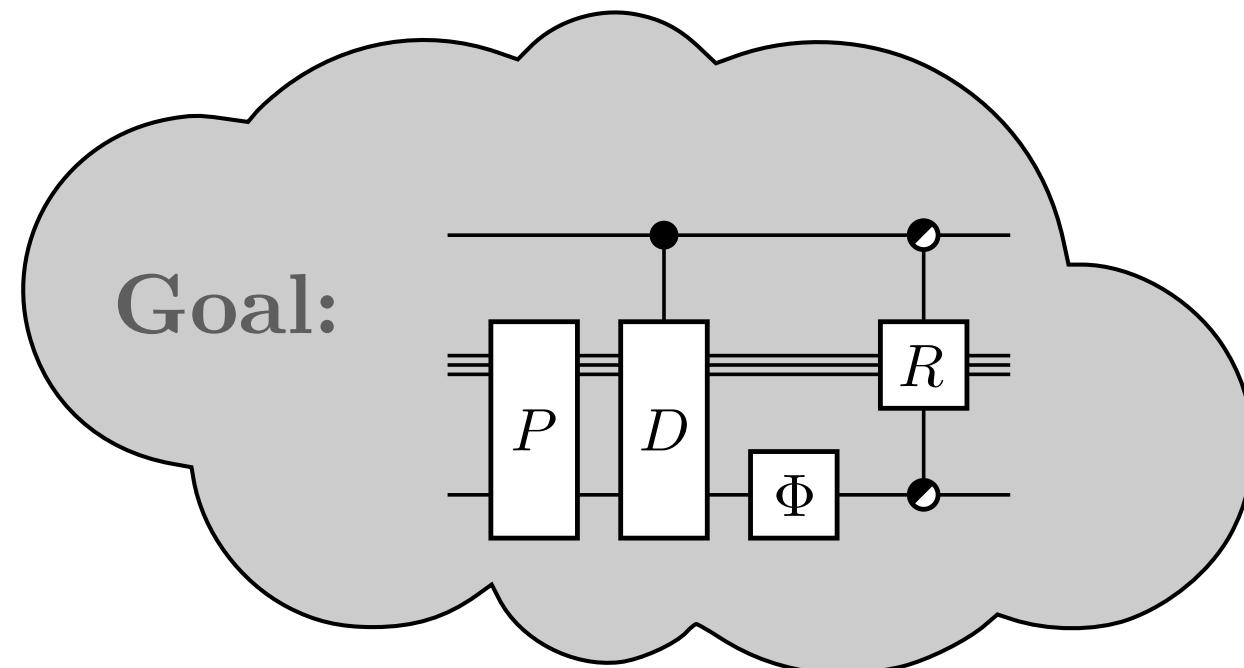
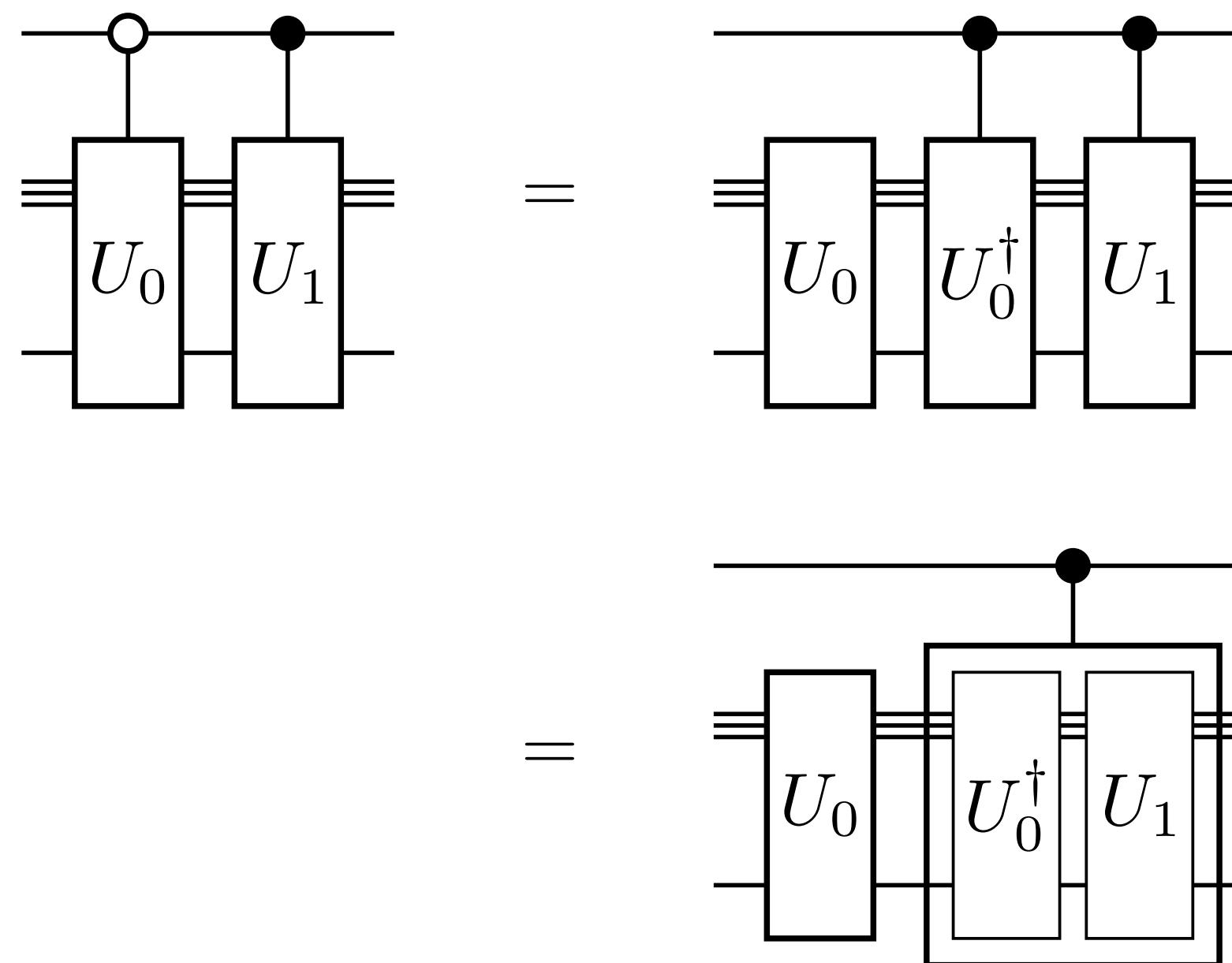


Precomputation identity: proof

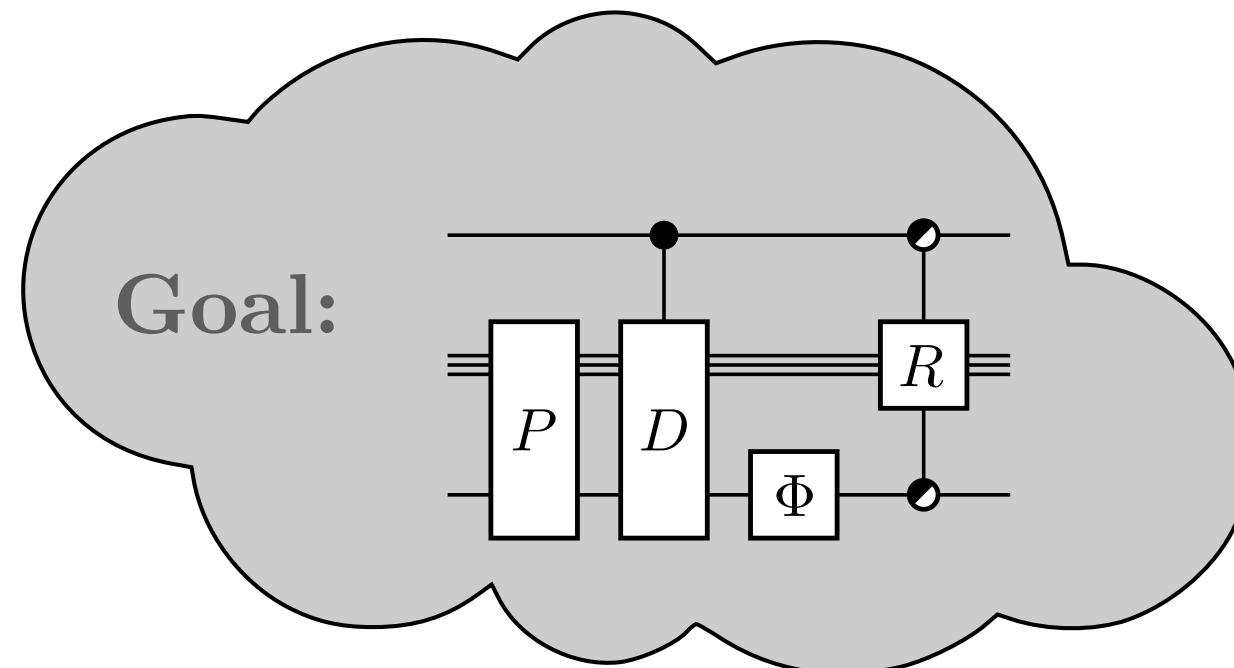
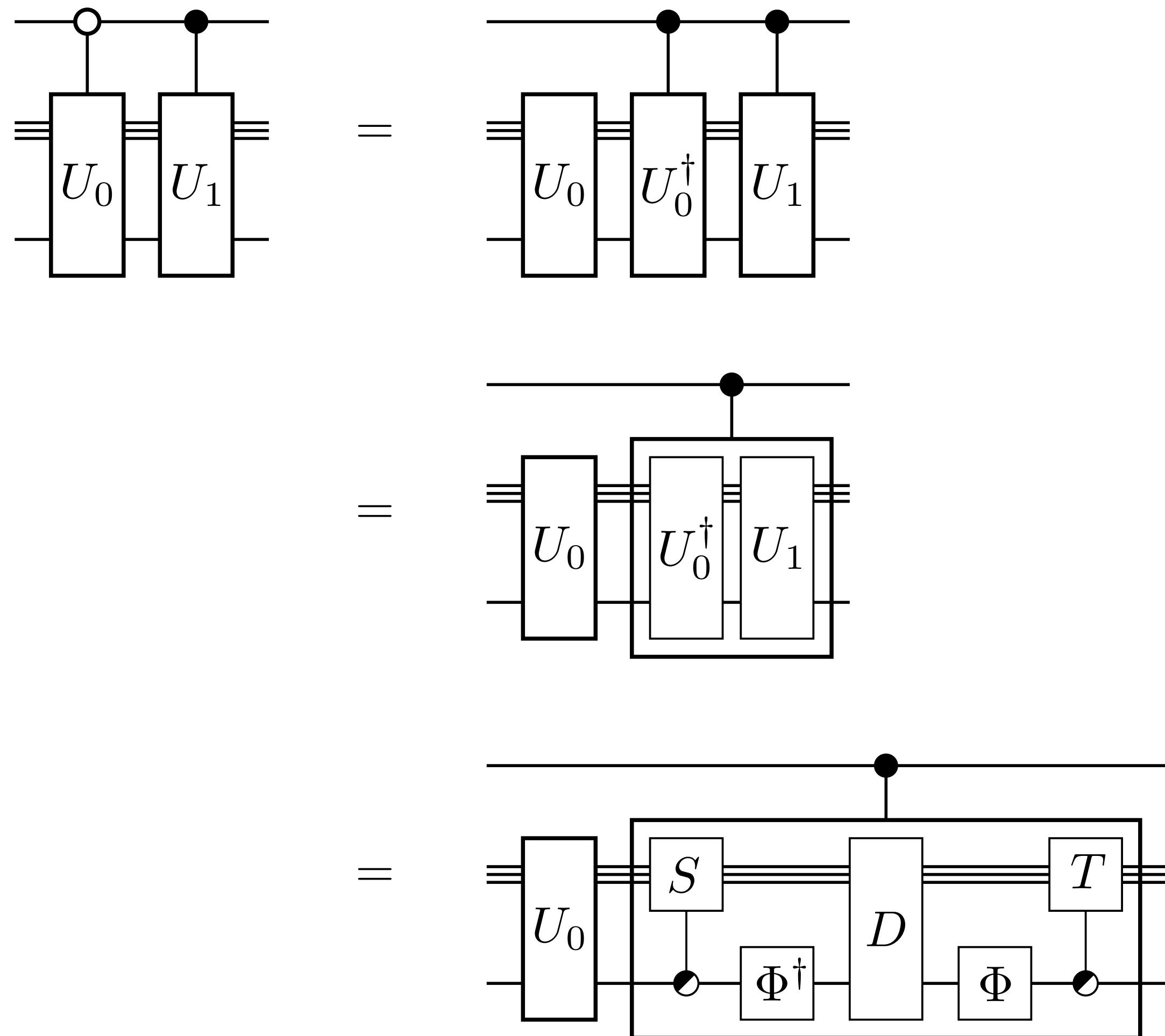


Precomputation identity: proof

Goal:



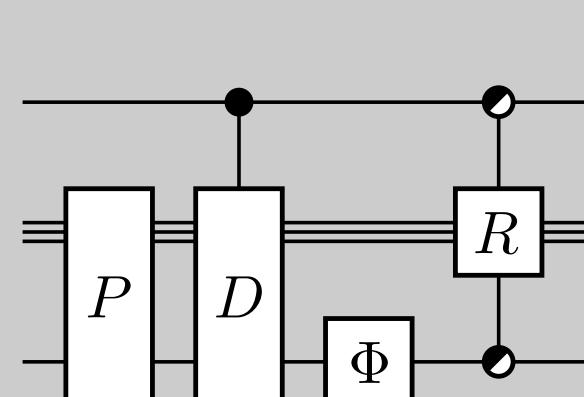
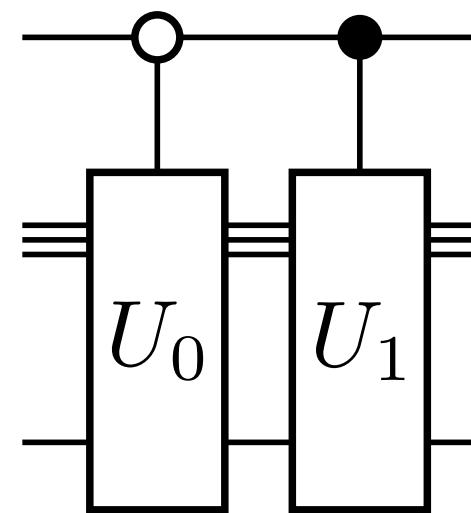
Precomputation identity: proof



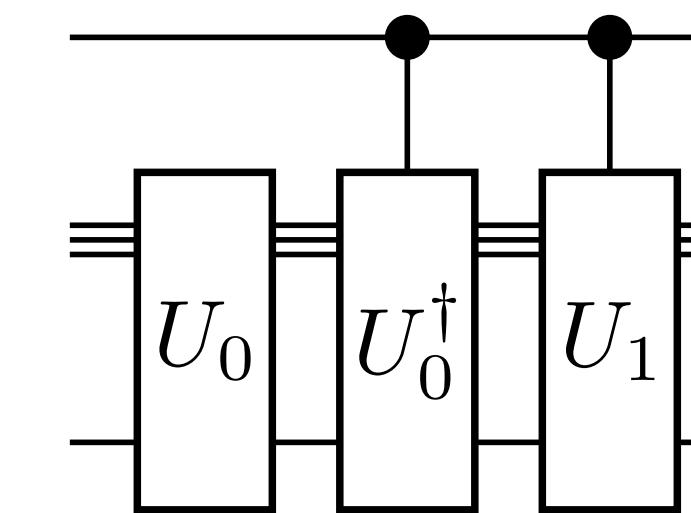
Cosine-Sine decomposition

Precomputation identity: proof

Goal:



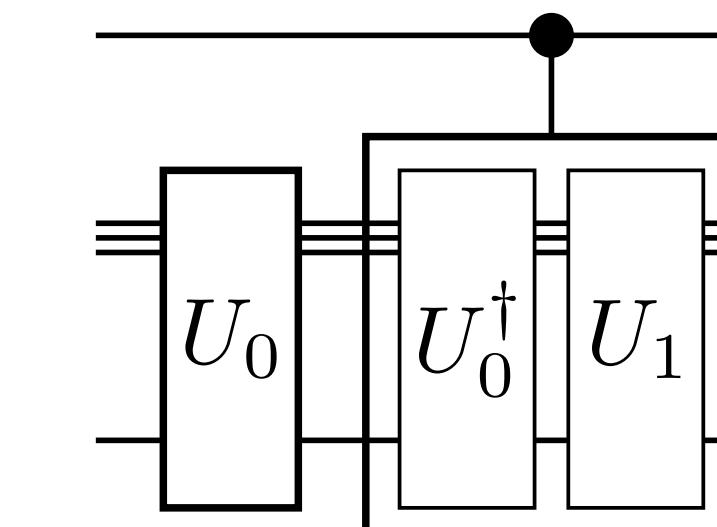
—



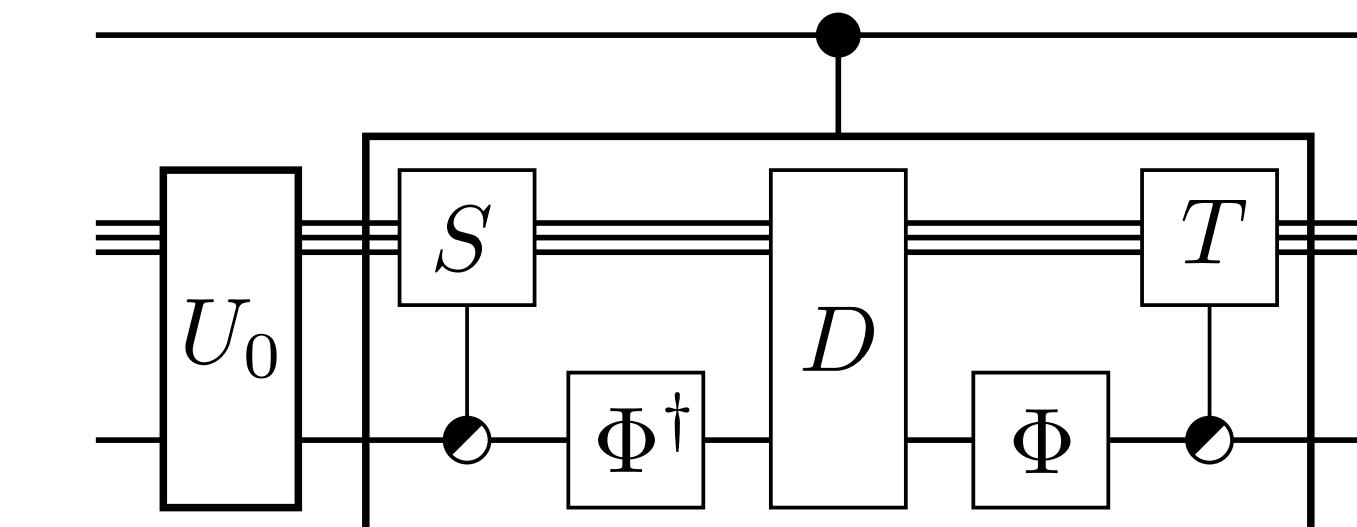
Fact (Cosine-Sine Decomposition [*e.g.* [PW94](#)]). For any unitary $U = \begin{pmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{pmatrix}$, there are unitaries S_i, T_j s.t.

$$\begin{pmatrix} S_1 & 0 \\ 0 & S_2 \end{pmatrix} \begin{pmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{pmatrix} \begin{pmatrix} T_1 & 0 \\ 0 & T_2 \end{pmatrix} = \begin{pmatrix} \Sigma_1 & \Sigma_2 \\ \Sigma_2 & -\Sigma_1 \end{pmatrix}$$

where Σ_1, Σ_2 are the singular value matrices of U_{11} and U_{12} respectively.

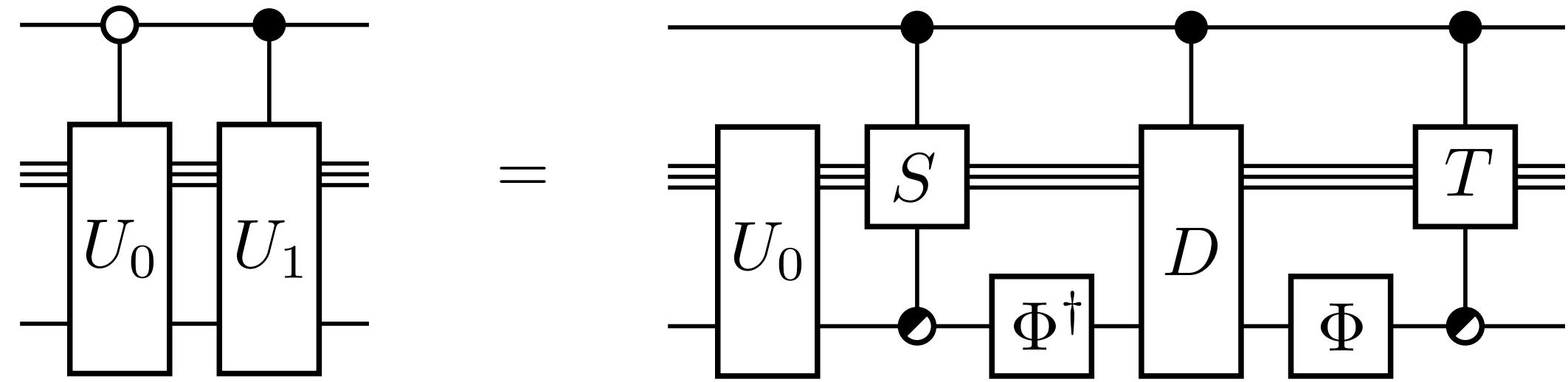
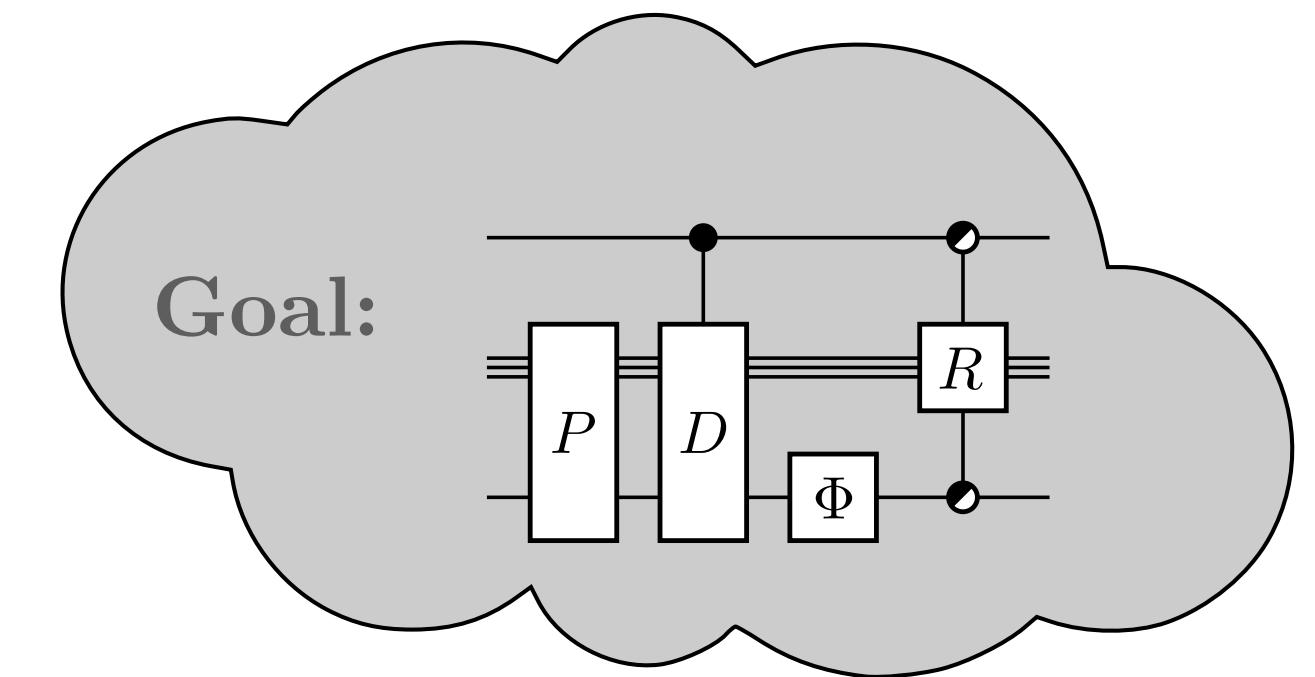


—

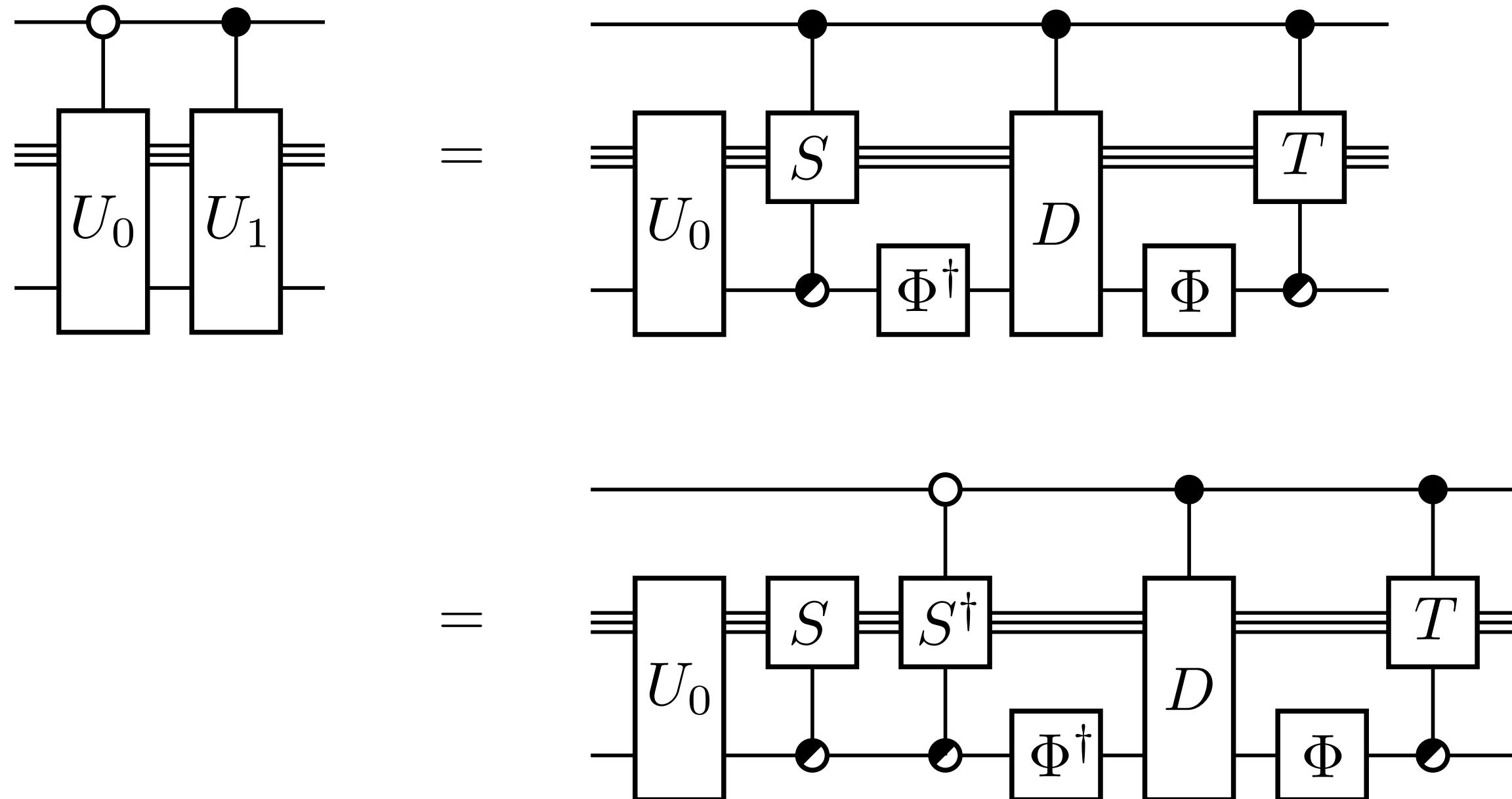
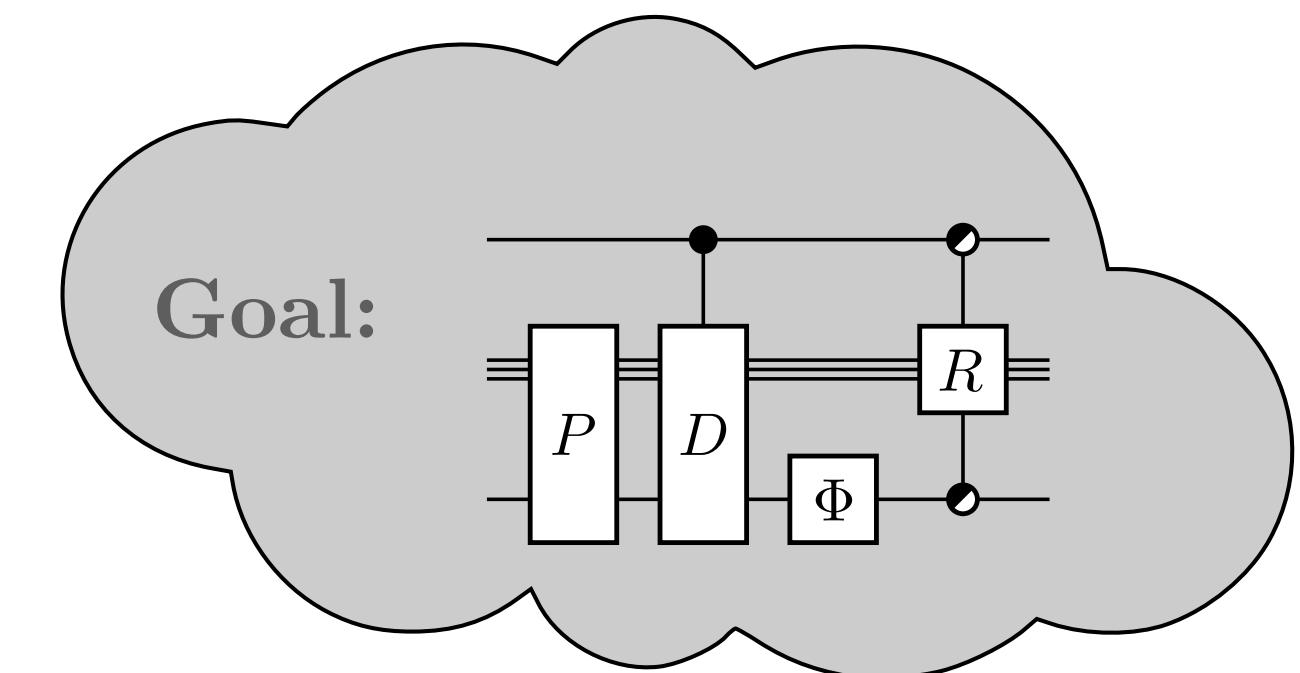


Cosine-Sine decomposition

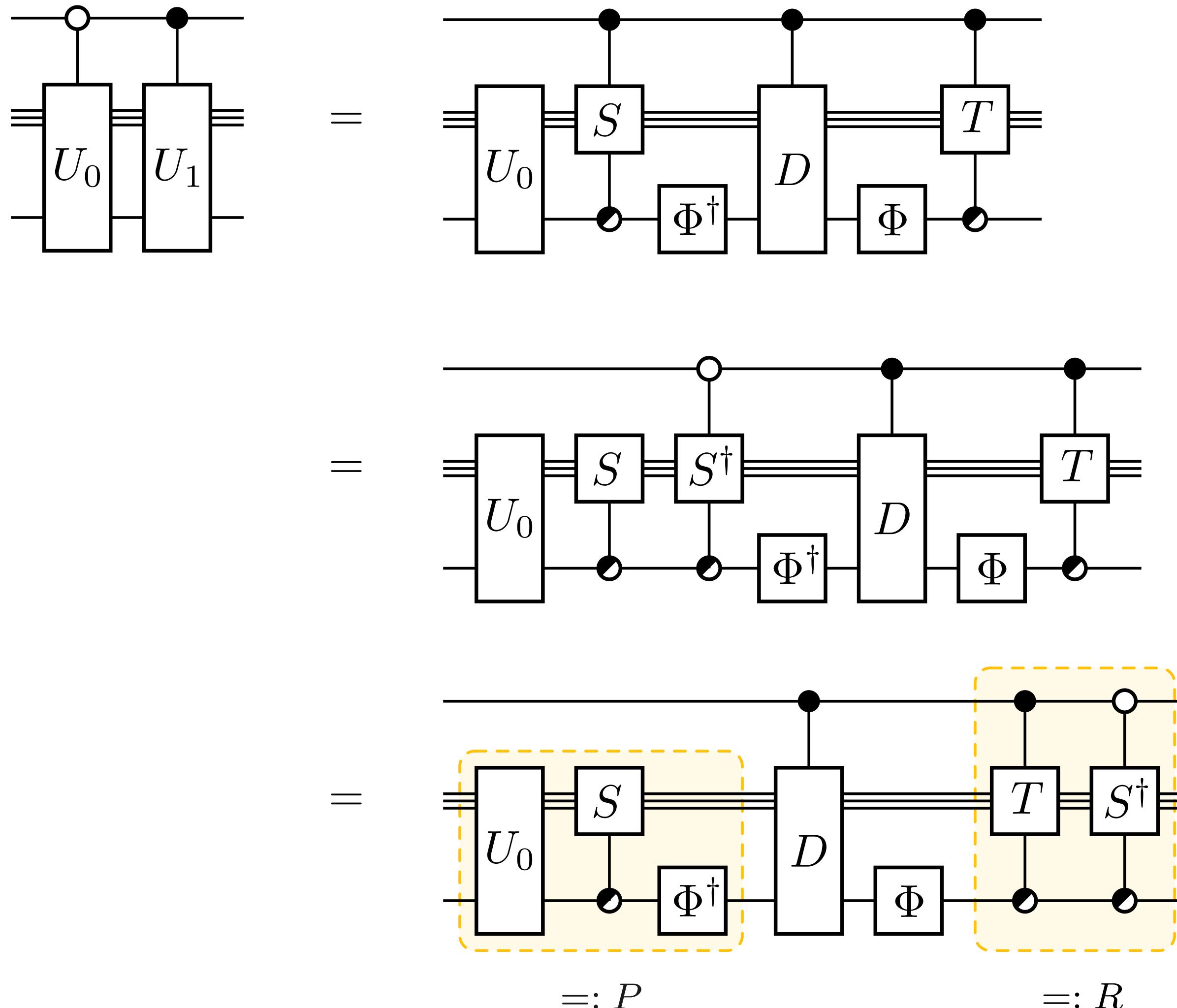
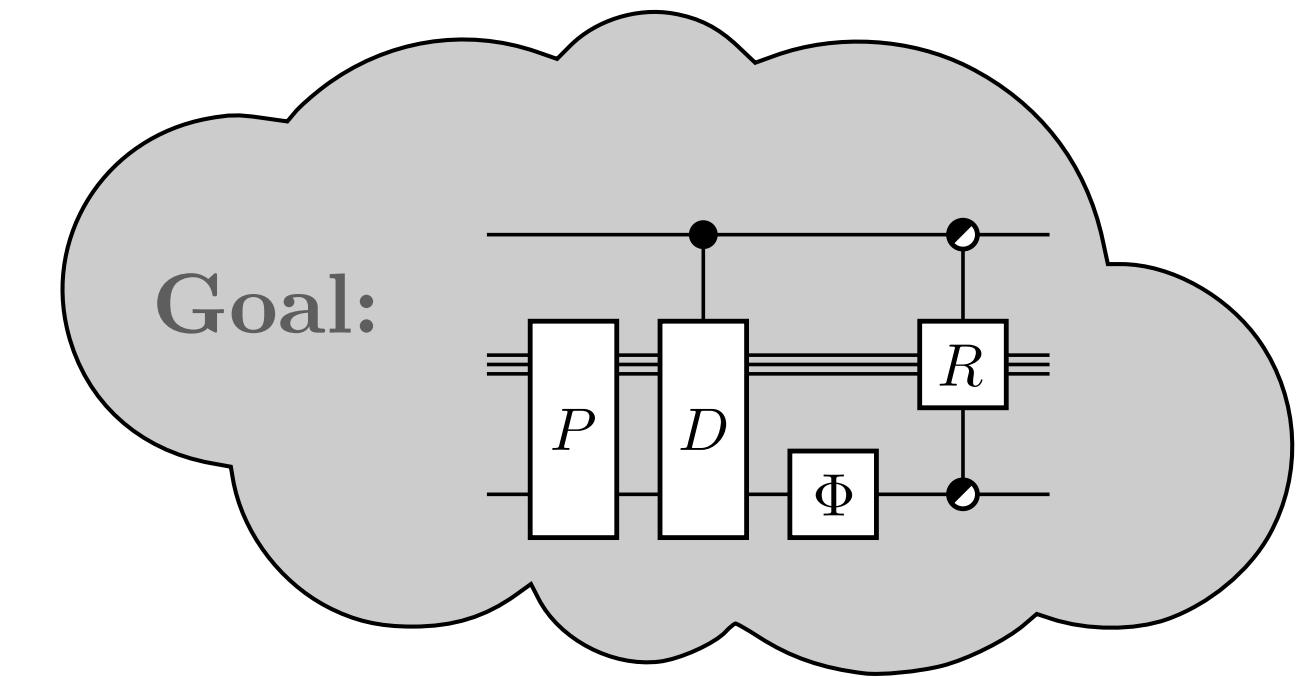
Precomputation identity: proof



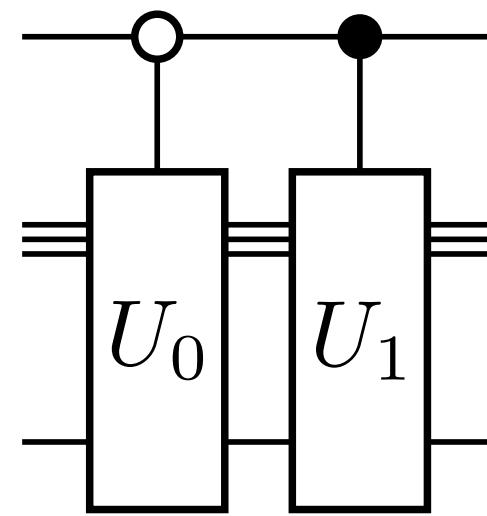
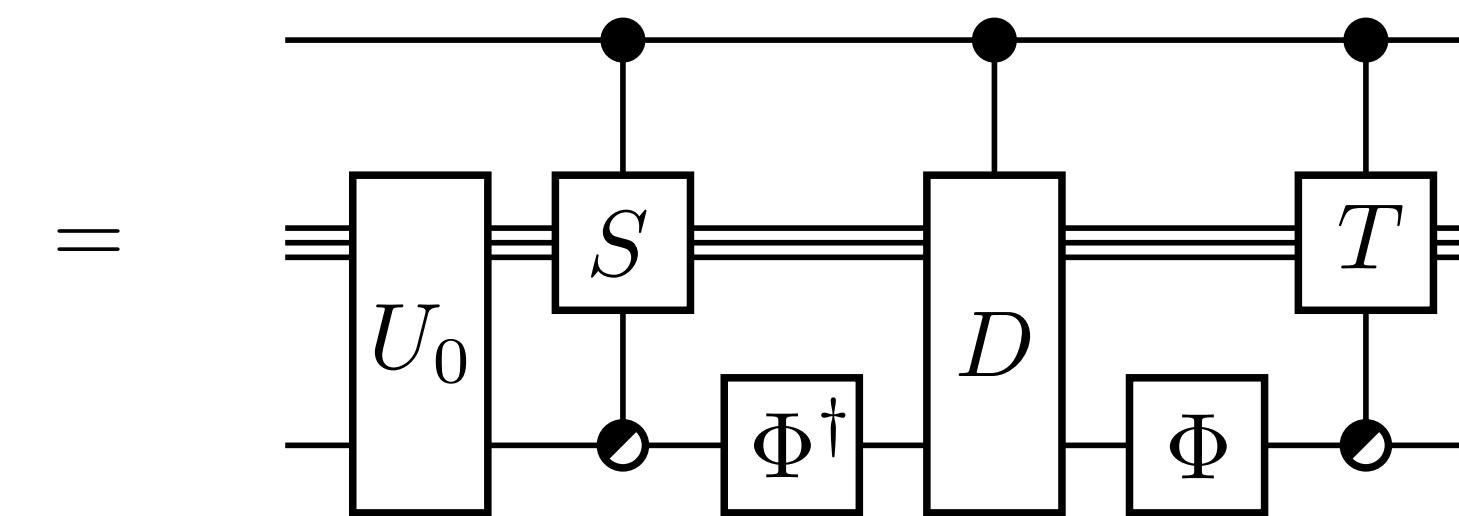
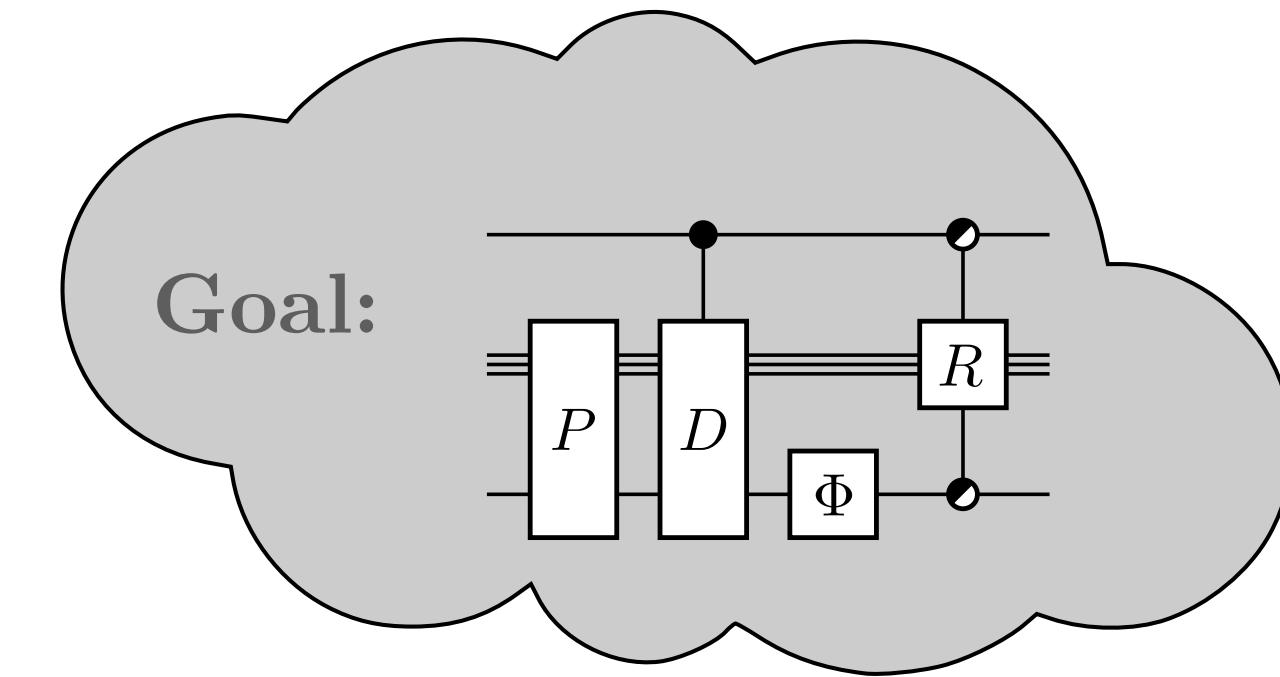
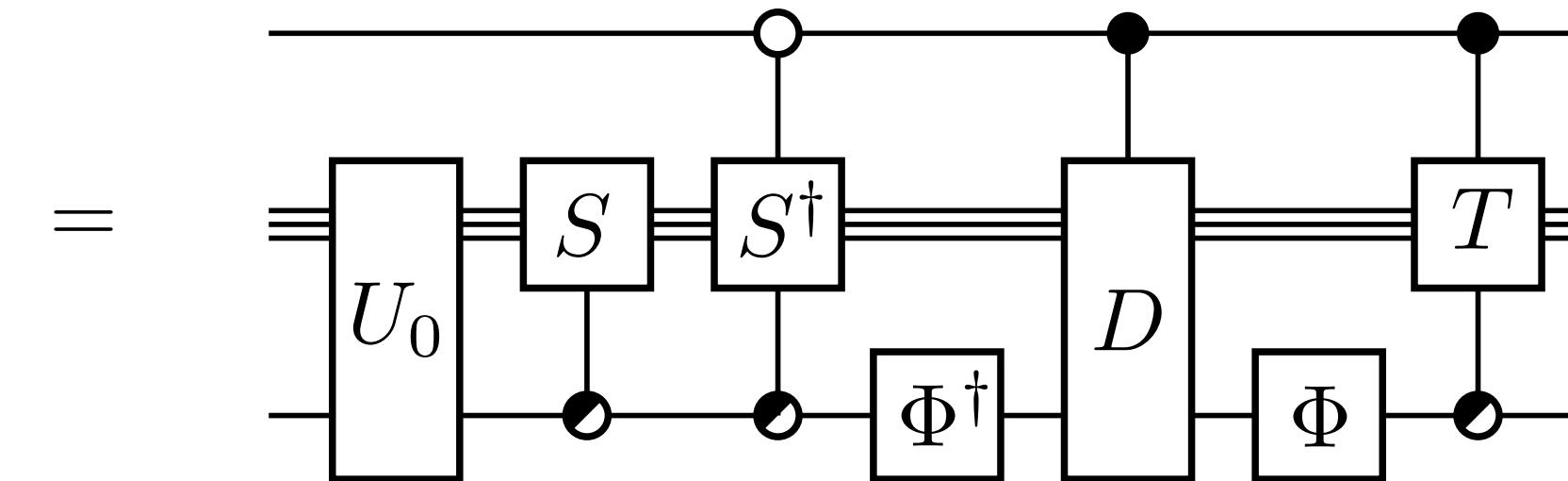
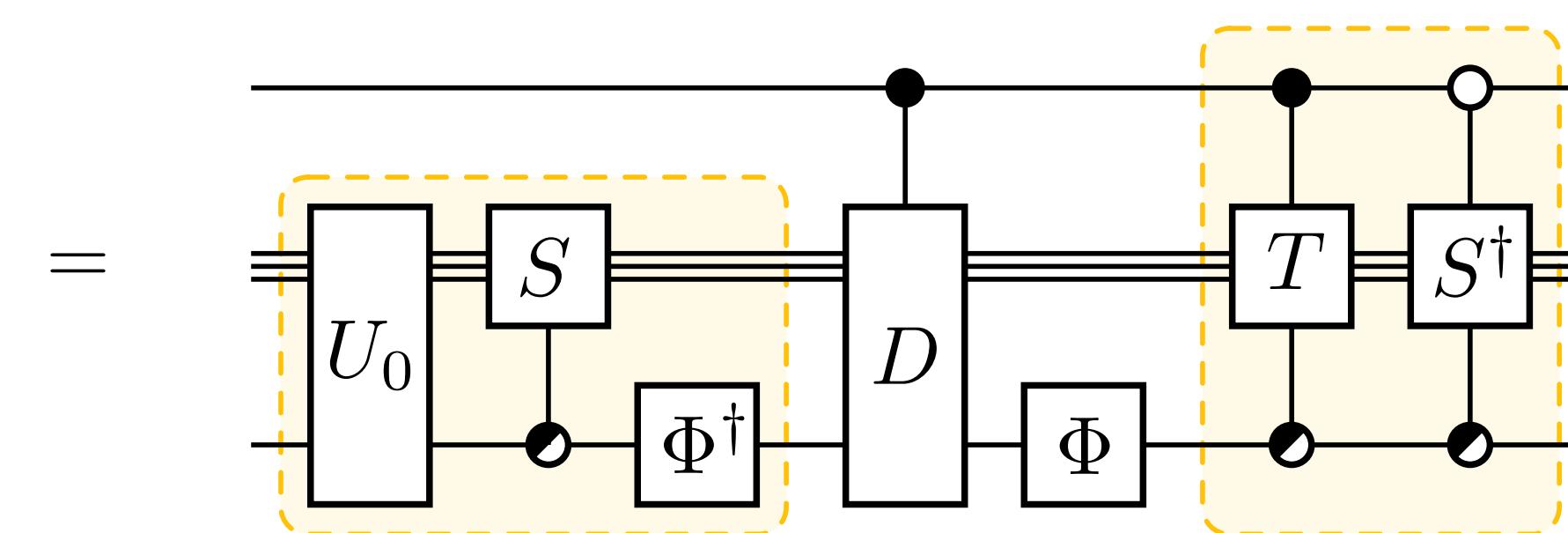
Precomputation identity: proof



Precomputation identity: proof

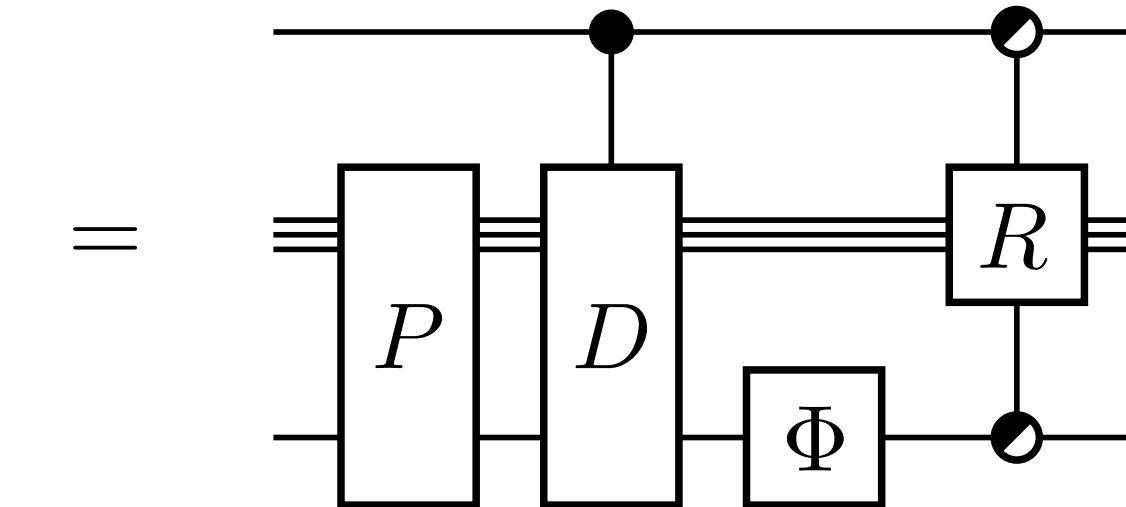


Precomputation identity: proof



$=: P$

$=: R$



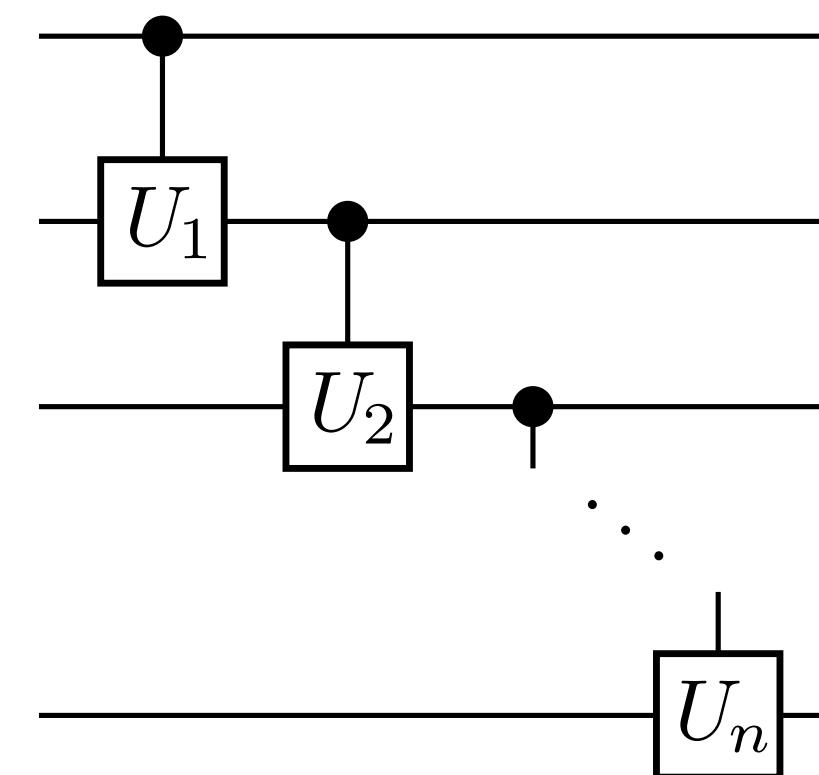
□

Our results

1. Moore–Nilsson unitaries have $O(\log n)$ -depth circuits

Theorem. For any 1-qubit unitaries U_1, \dots, U_n , the unitary

$$C(U_1, \dots, U_n) :=$$



Bonus: in regime of 2D geometrically-local circuits:
 $O(\sqrt{n})$ depth, $O(n)$ ancillae

Done

has an exact, ancilla-free circuit of depth $O(\log n)$.

2. Depth reductions for general “control-cascade circuits”

Example corollary. For all $(2 \log n)$ -qubit unitaries U_1, \dots, U_n , the unitary $C(U_1, \dots, U_n)$ has an exact circuit of depth $O(n \log n)$ using $O(n^{3/2})$ ancillae.

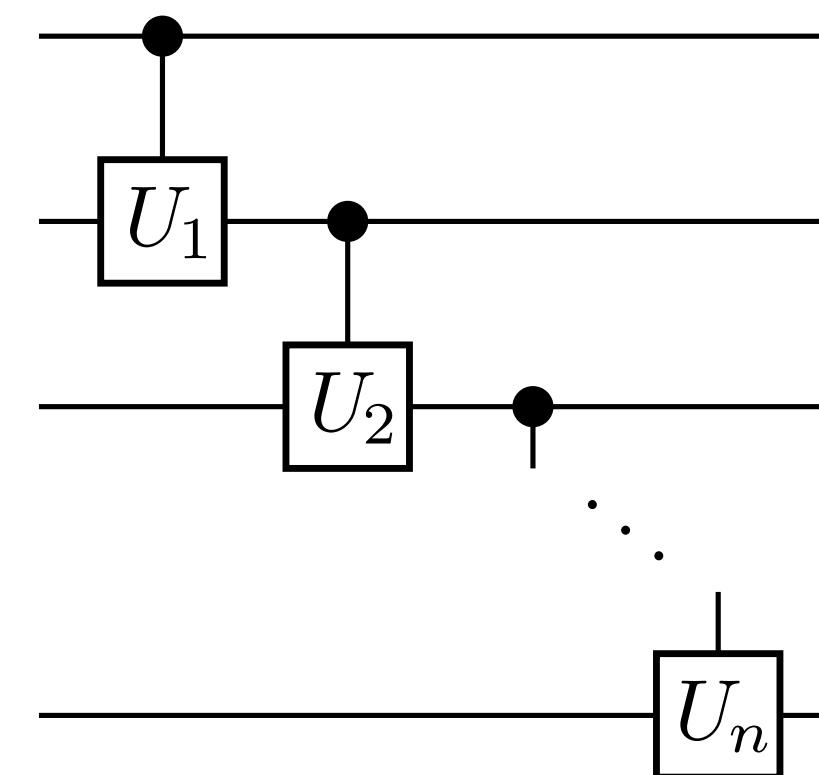
Our results

1. Moore–Nilsson unitaries have $O(\log n)$ -depth circuits

Up
Next

Theorem. For any 1-qubit unitaries U_1, \dots, U_n , the unitary

$$C(U_1, \dots, U_n) :=$$



Bonus: in regime of 2D geometrically-local circuits:
 $O(\sqrt{n})$ depth, $O(n)$ ancillae

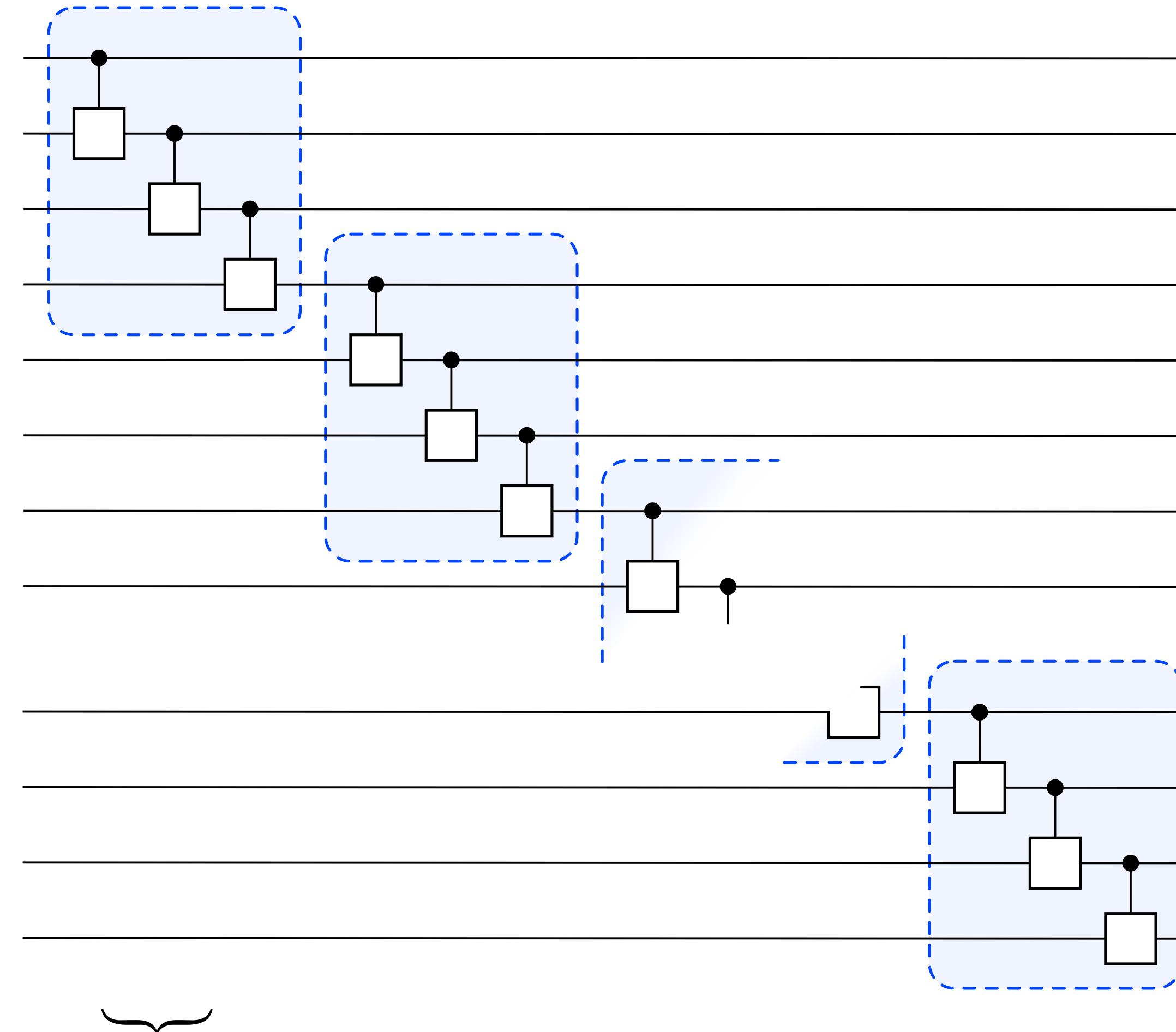
has an exact, ancilla-free circuit of depth $O(\log n)$.

2. Depth reductions for general “control-cascade circuits”

Example corollary. For all $(2 \log n)$ -qubit unitaries U_1, \dots, U_n , the unitary $C(U_1, \dots, U_n)$ has an exact circuit of depth $O(n \log n)$ using $O(n^{3/2})$ ancillae.

Refuting the Moore–Nilsson conjecture

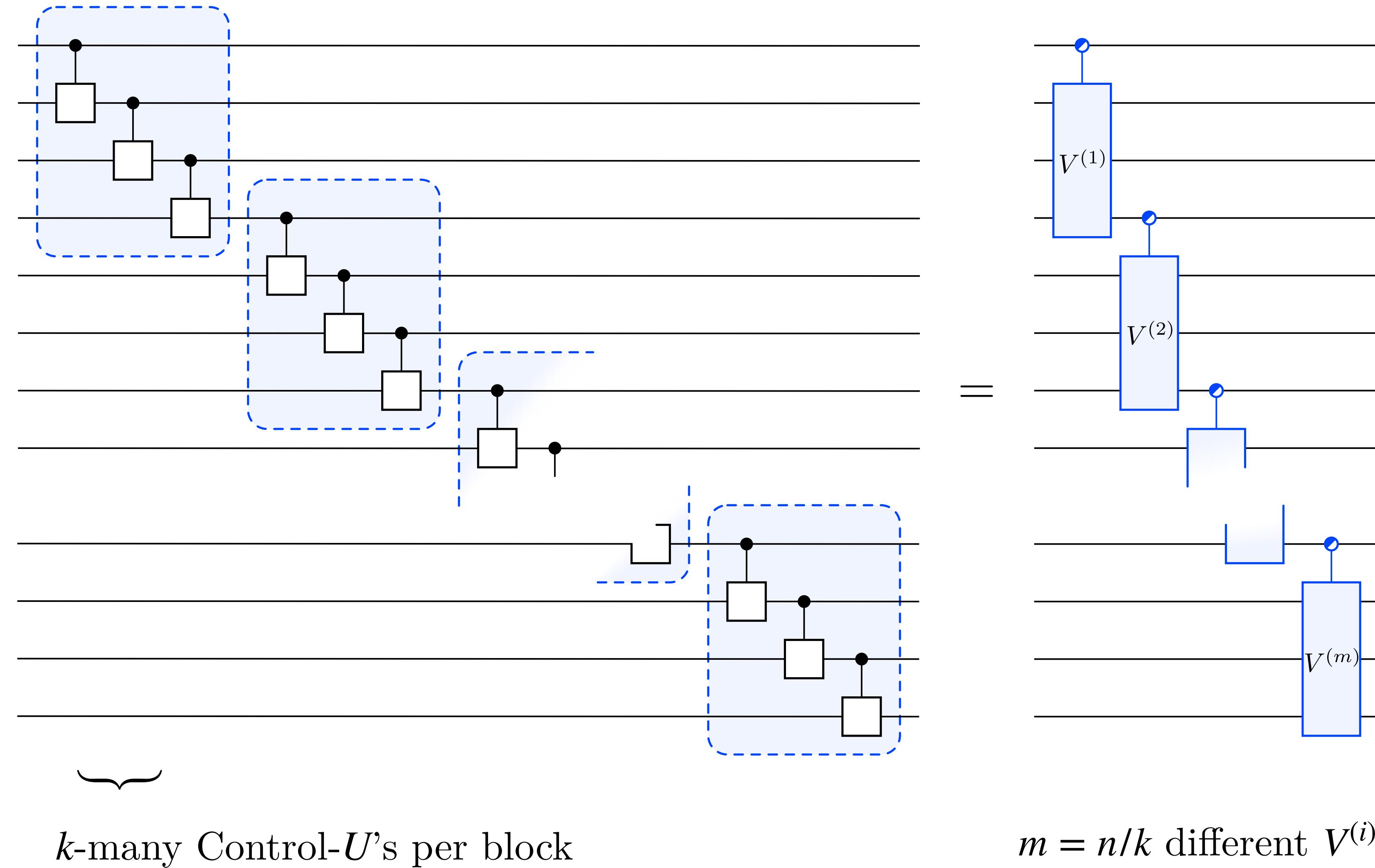
Step 1. Group control- U 's into blocks



k -many Control- U 's per block

Refuting the Moore–Nilsson conjecture

Step 1. Group control- U 's into blocks

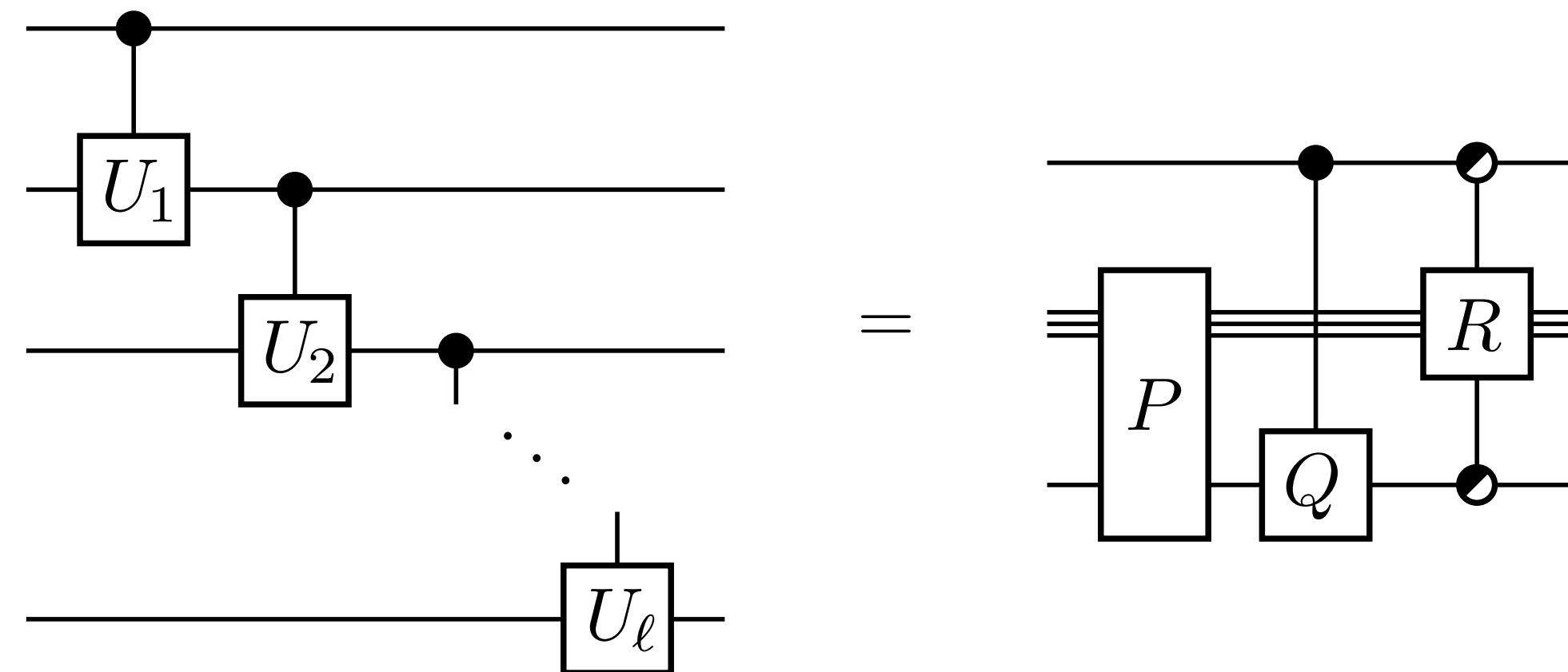


$m = n/k$ different $V^{(i)}$'s

Refuting the Moore–Nilsson conjecture

Lemma (Precomputation for Moore–Nilsson circuits).

There exist unitaries P, Q, R on $\ell, 1$, and $\ell - 1$ qubits respectively so that

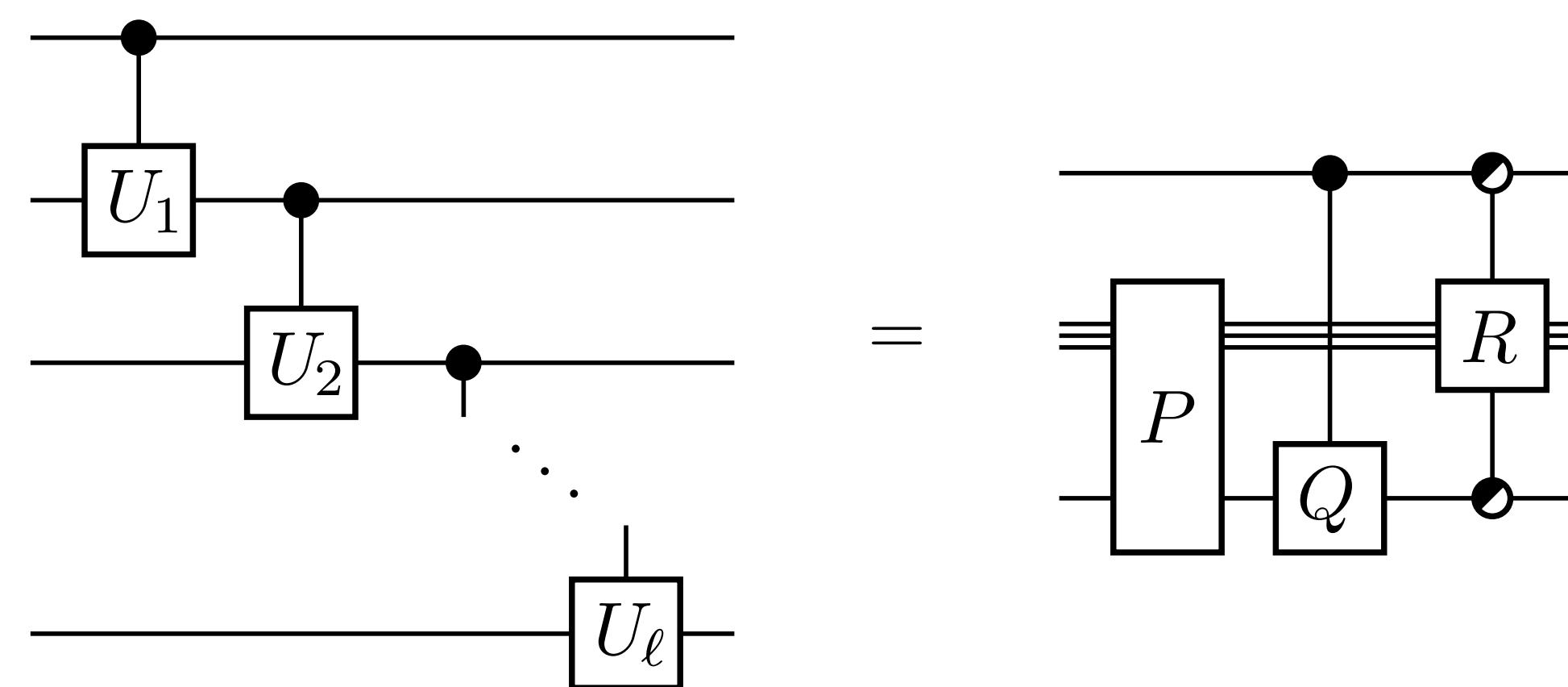


Step 2. Prove a better precomputation identity

Refuting the Moore–Nilsson conjecture

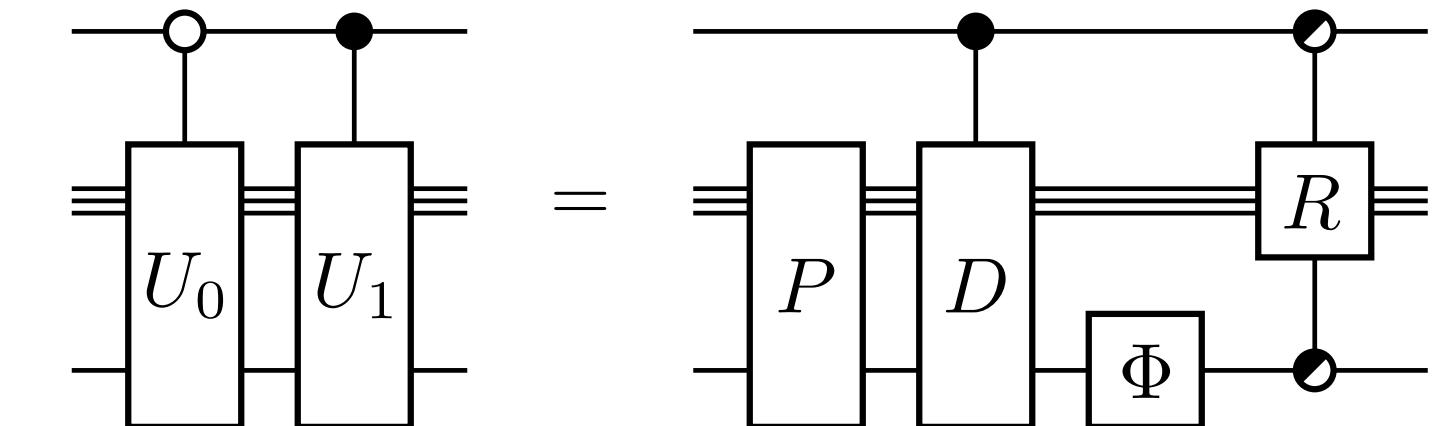
Lemma (Precomputation for Moore–Nilsson circuits).

There exist unitaries P, Q, R on $\ell, 1$, and $\ell - 1$ qubits respectively so that

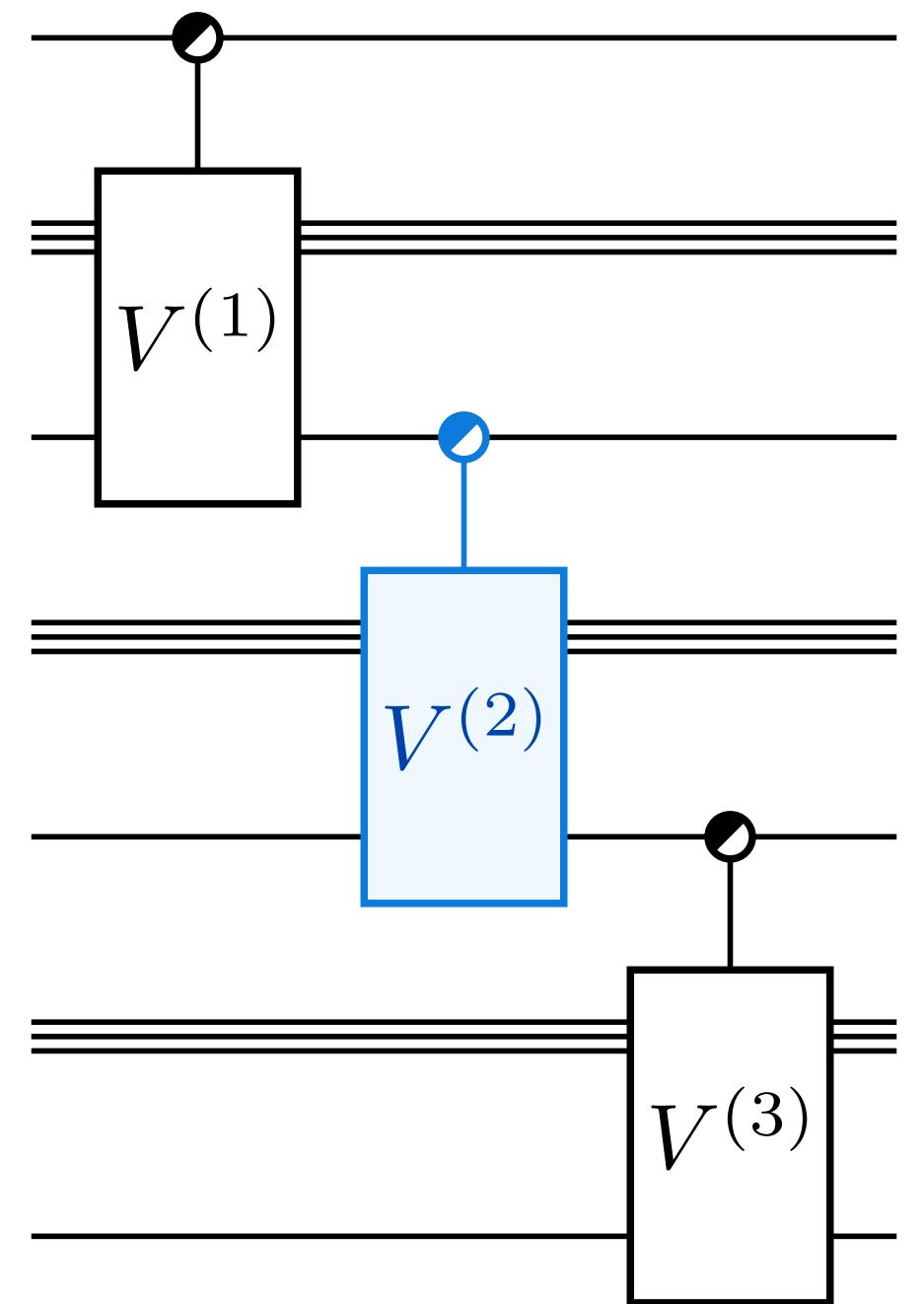


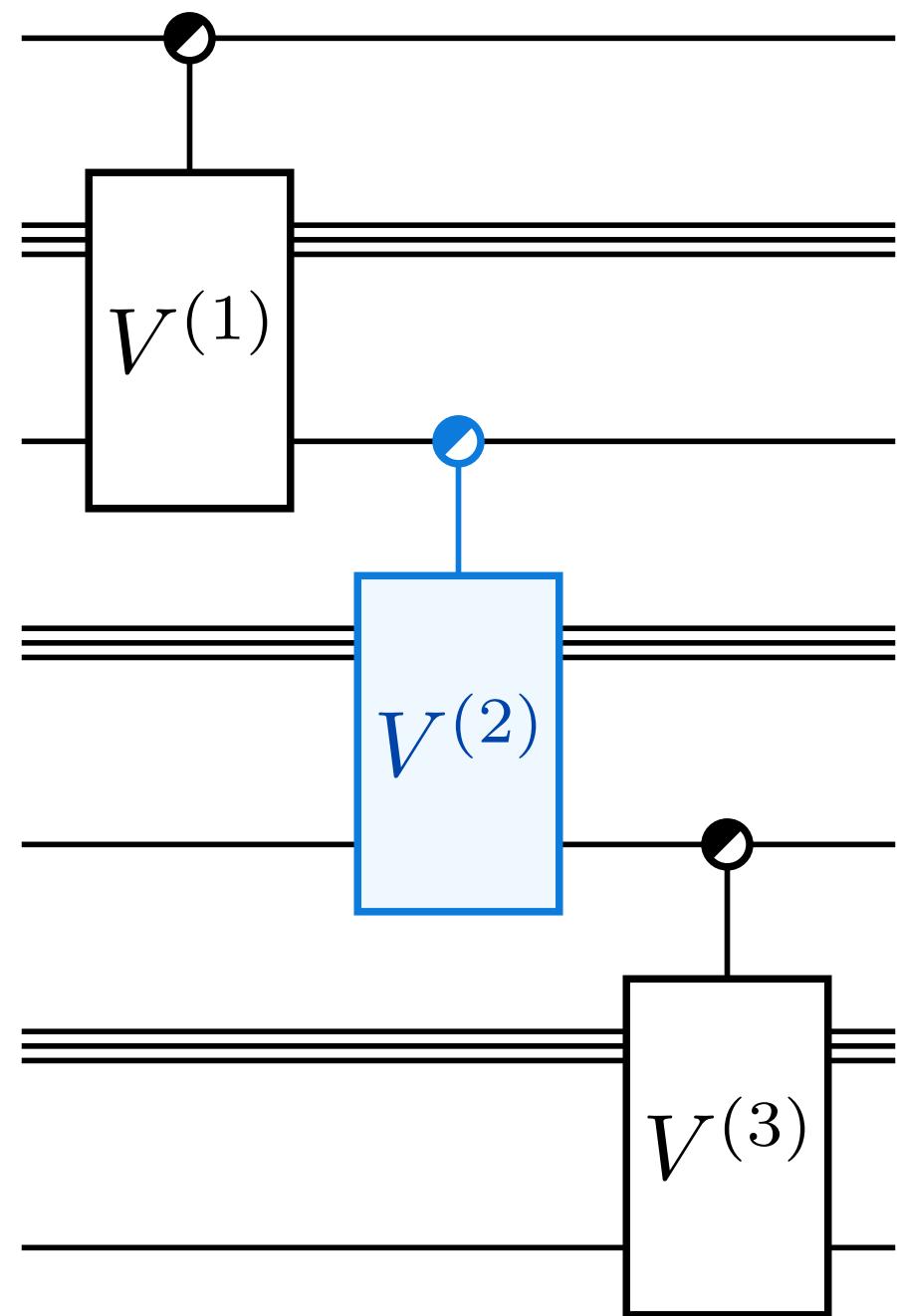
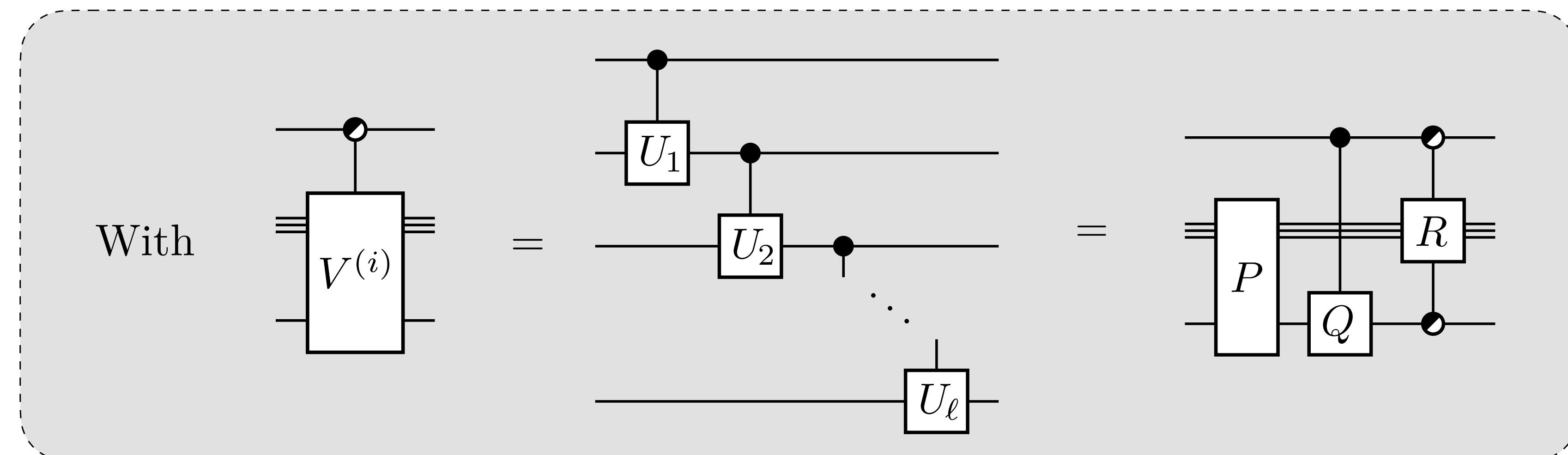
Step 2. Prove a better precomputation identity

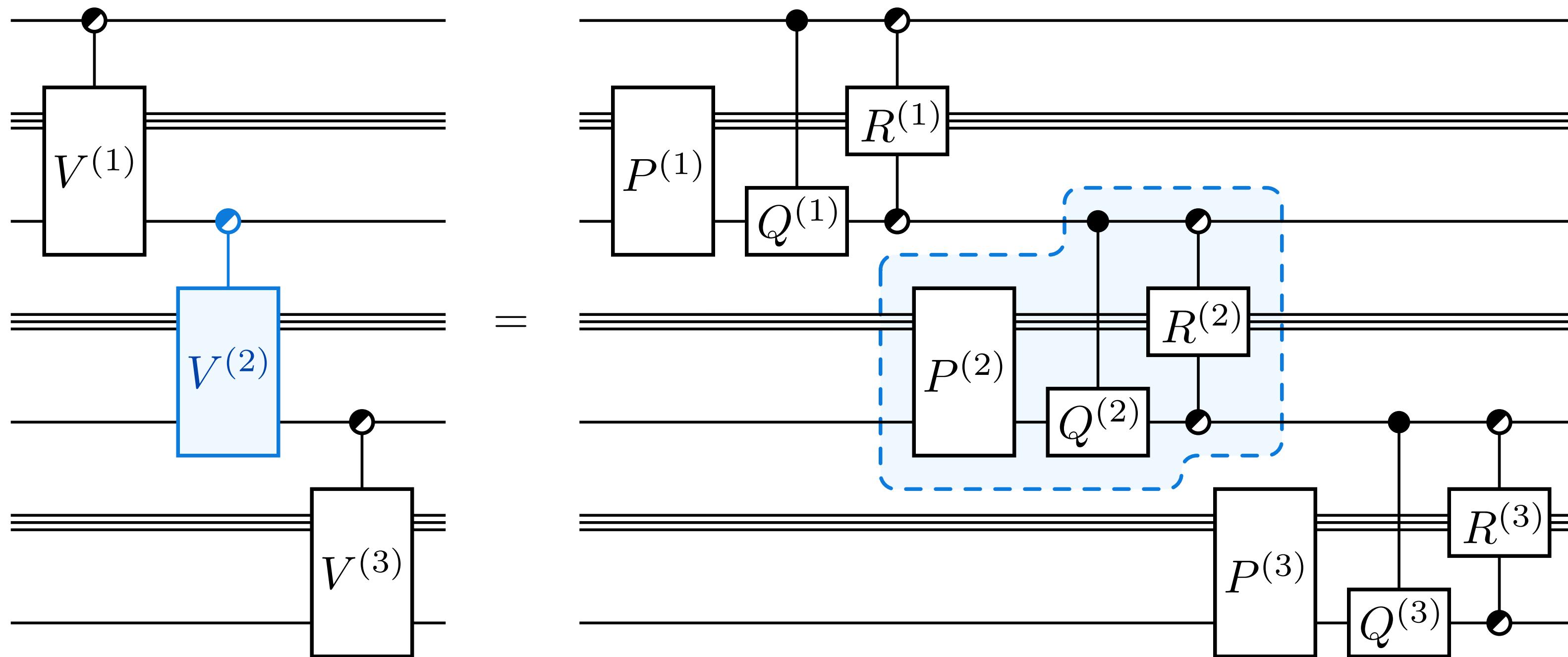
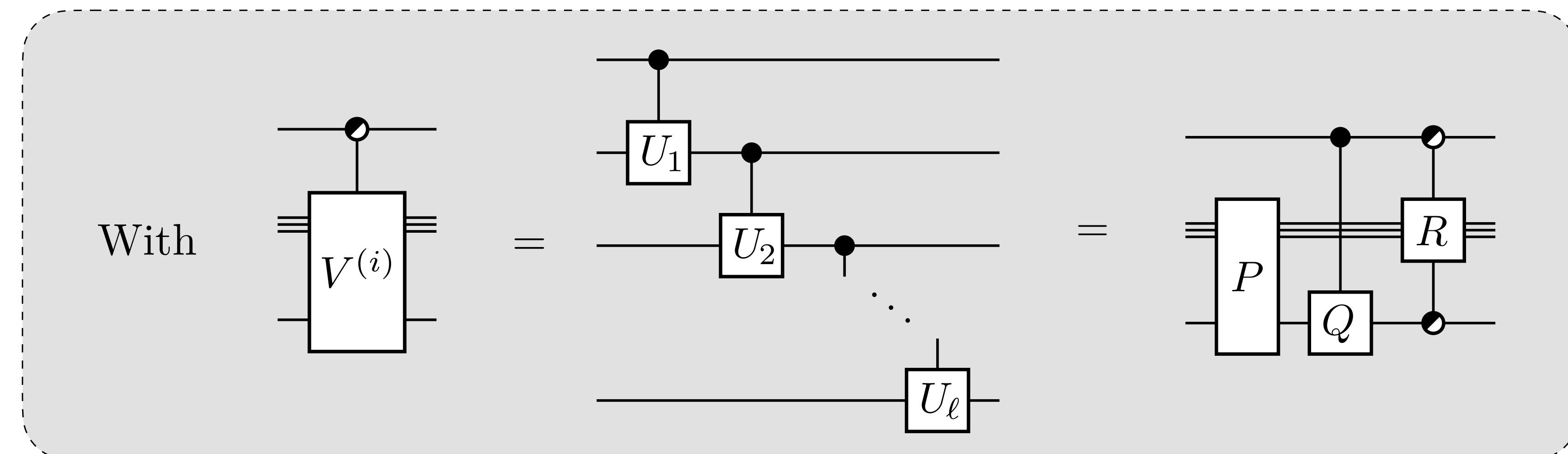
C.f. generic precomputation identity

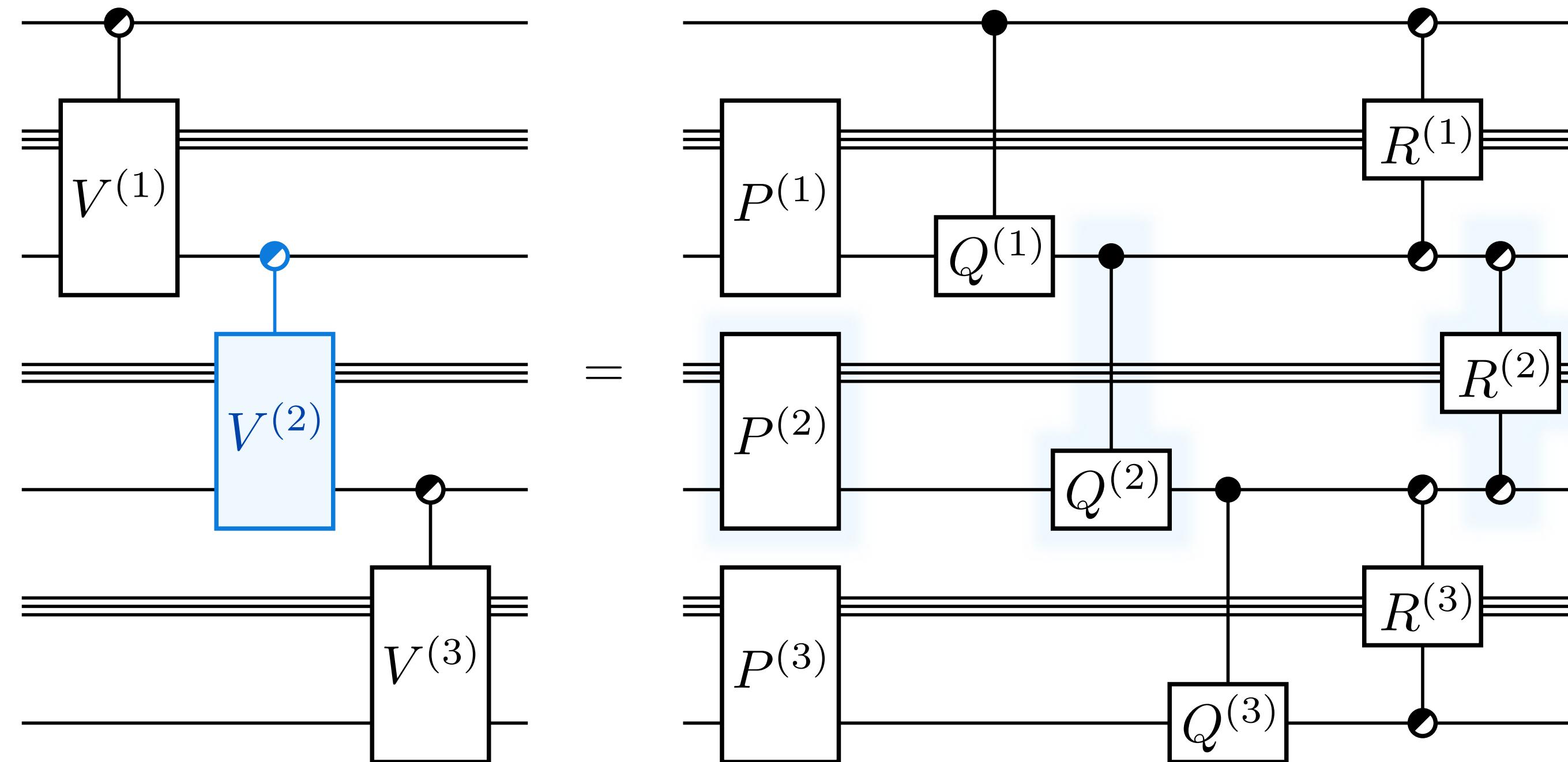
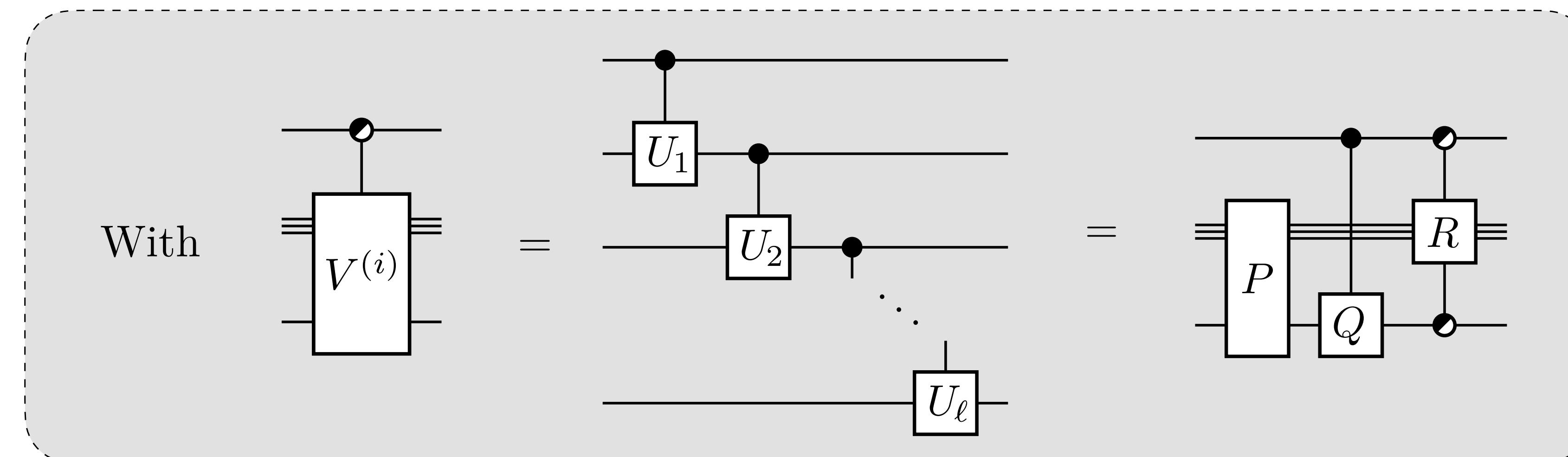


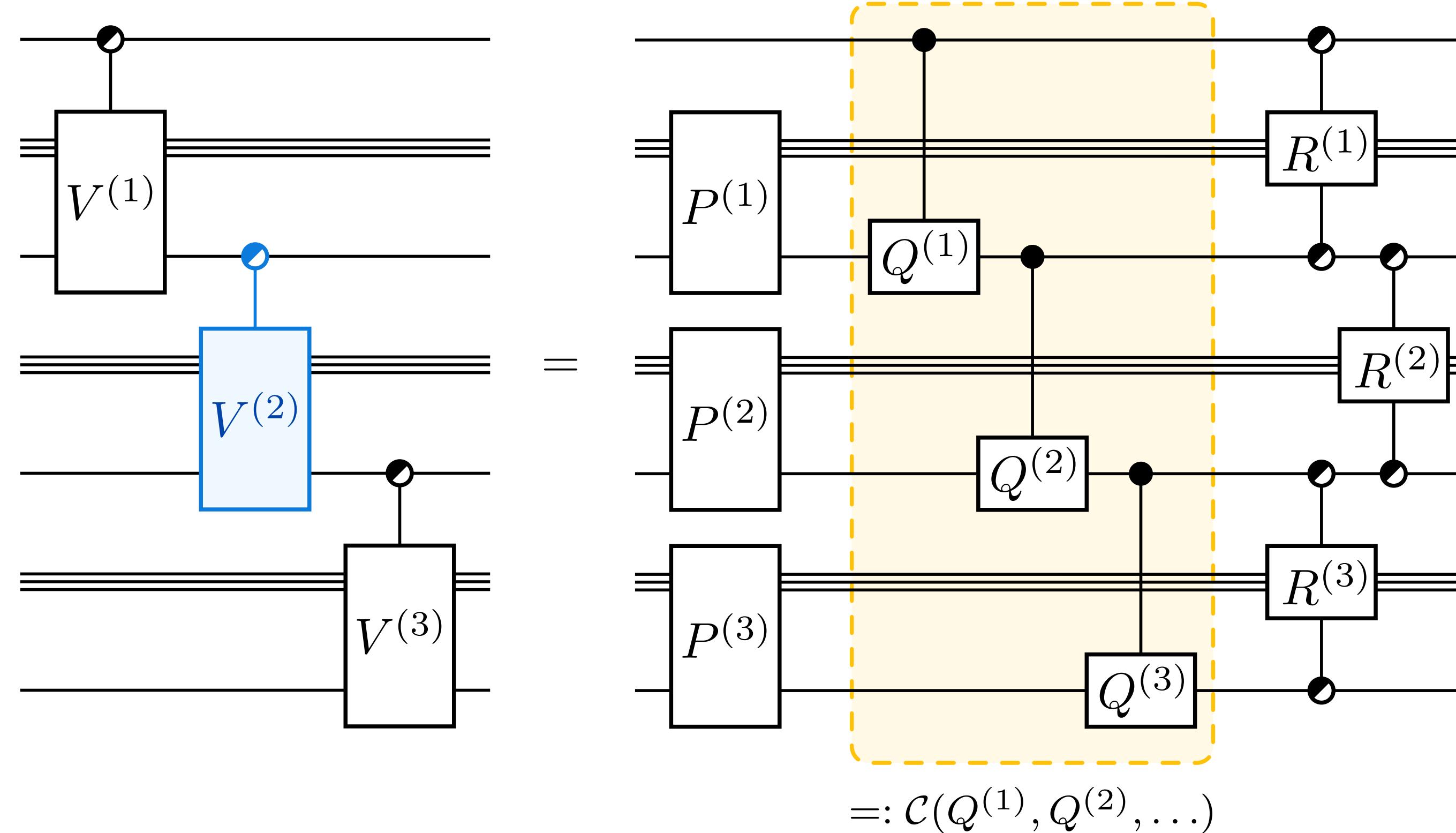
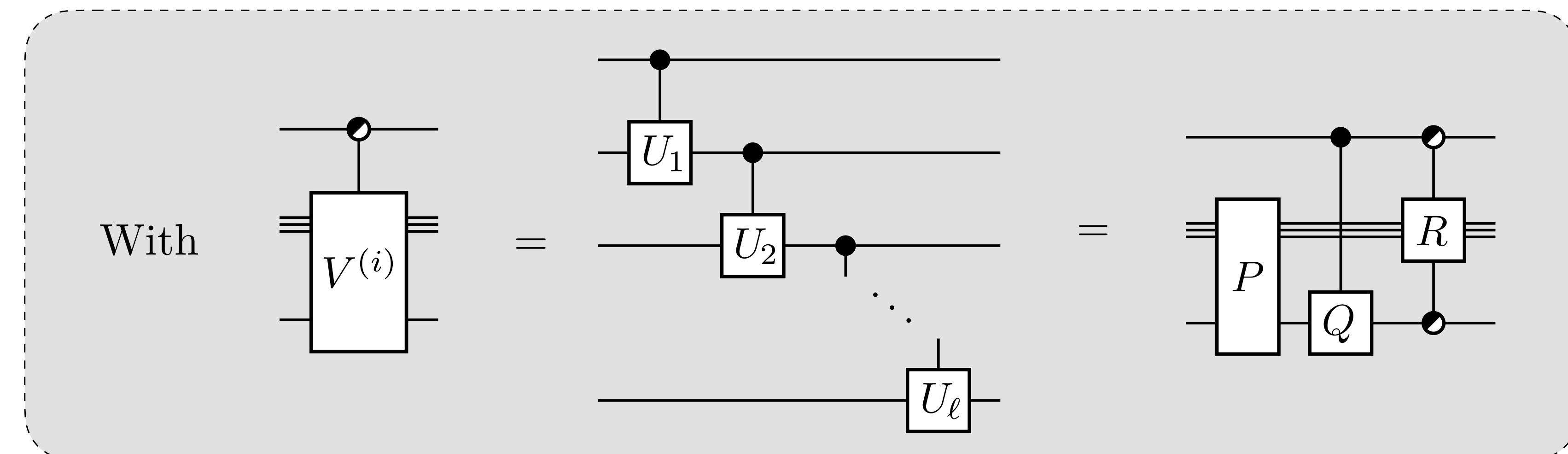
for D diagonal and Φ a universal (fixed) unitary.

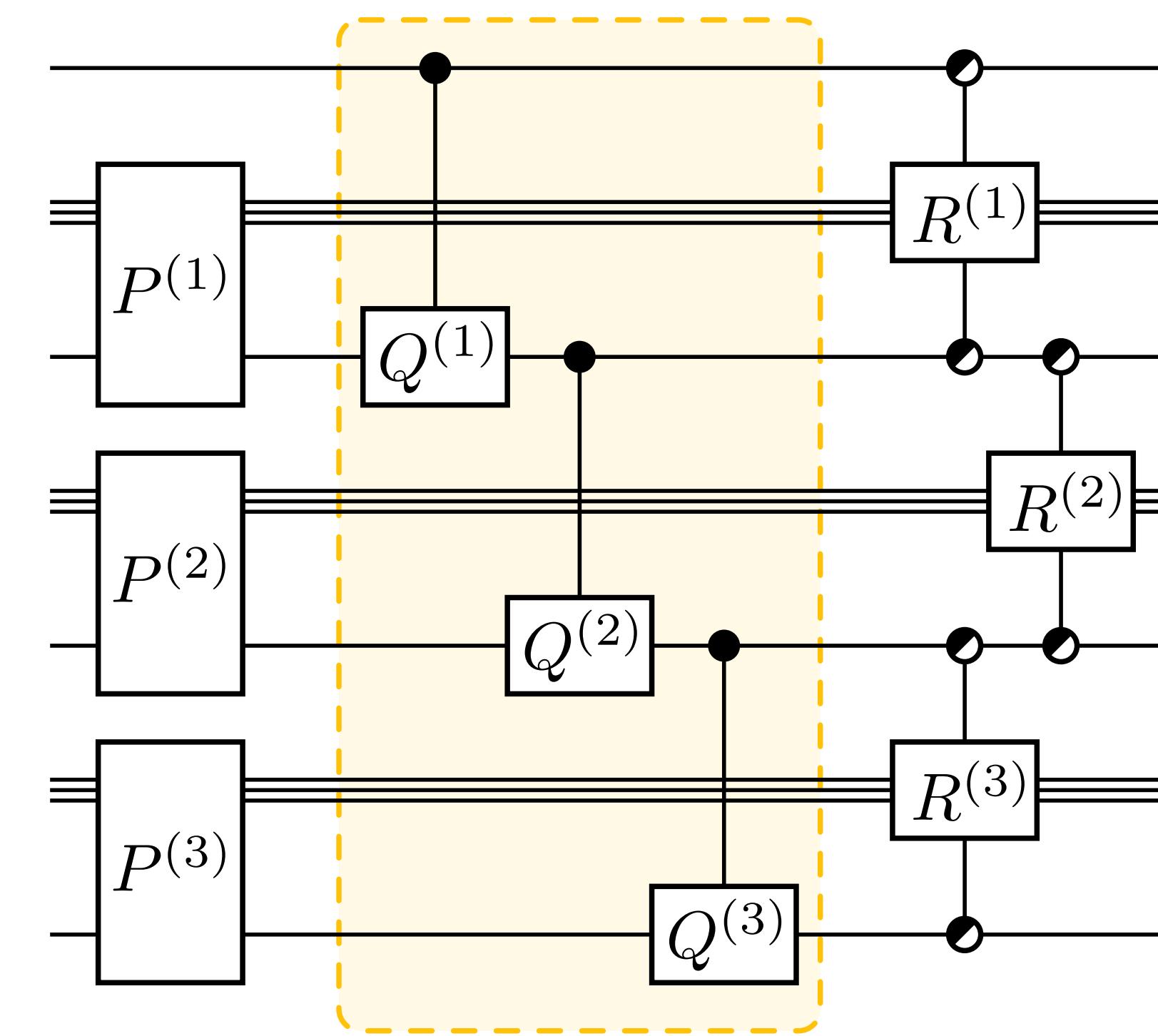




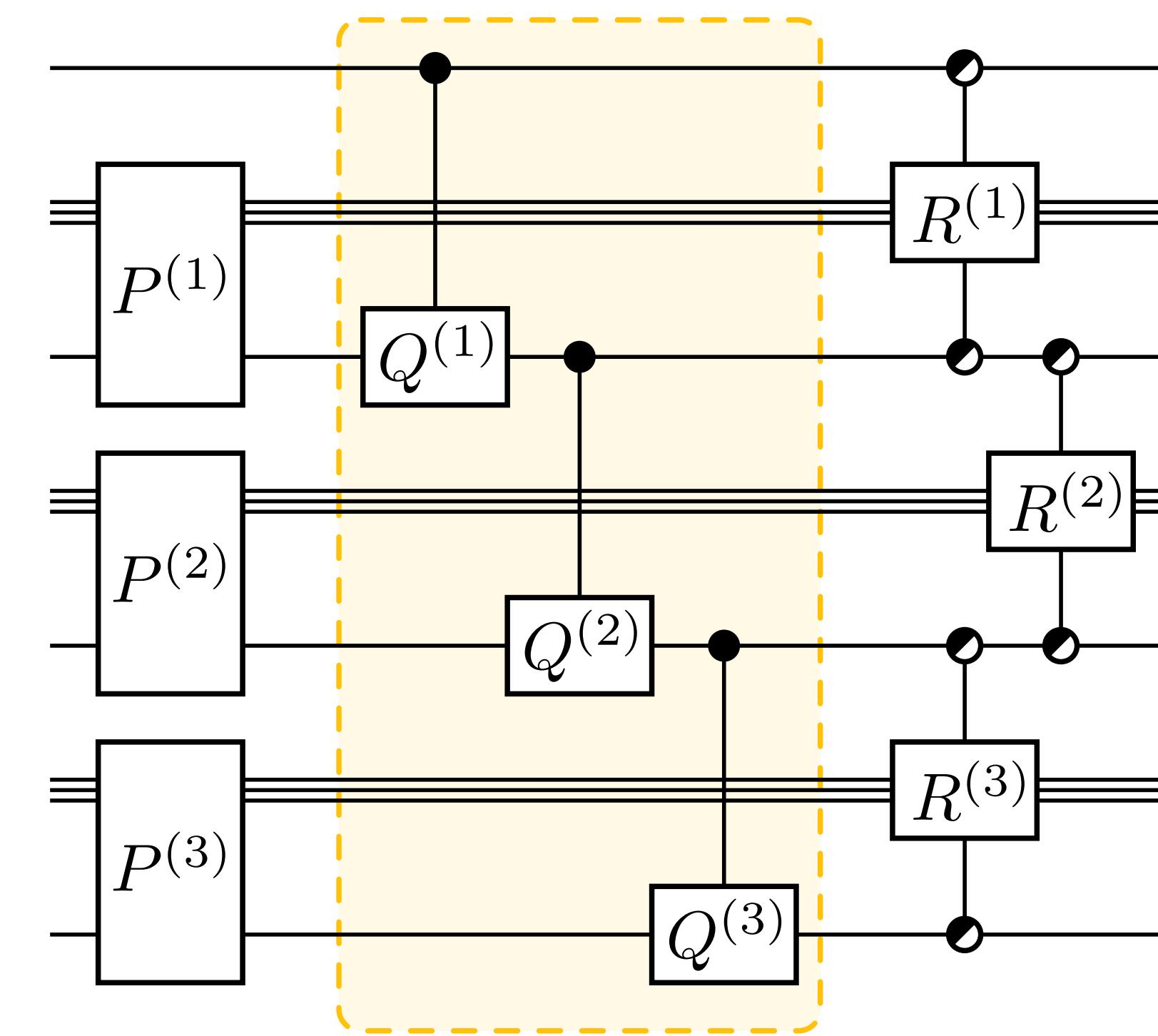








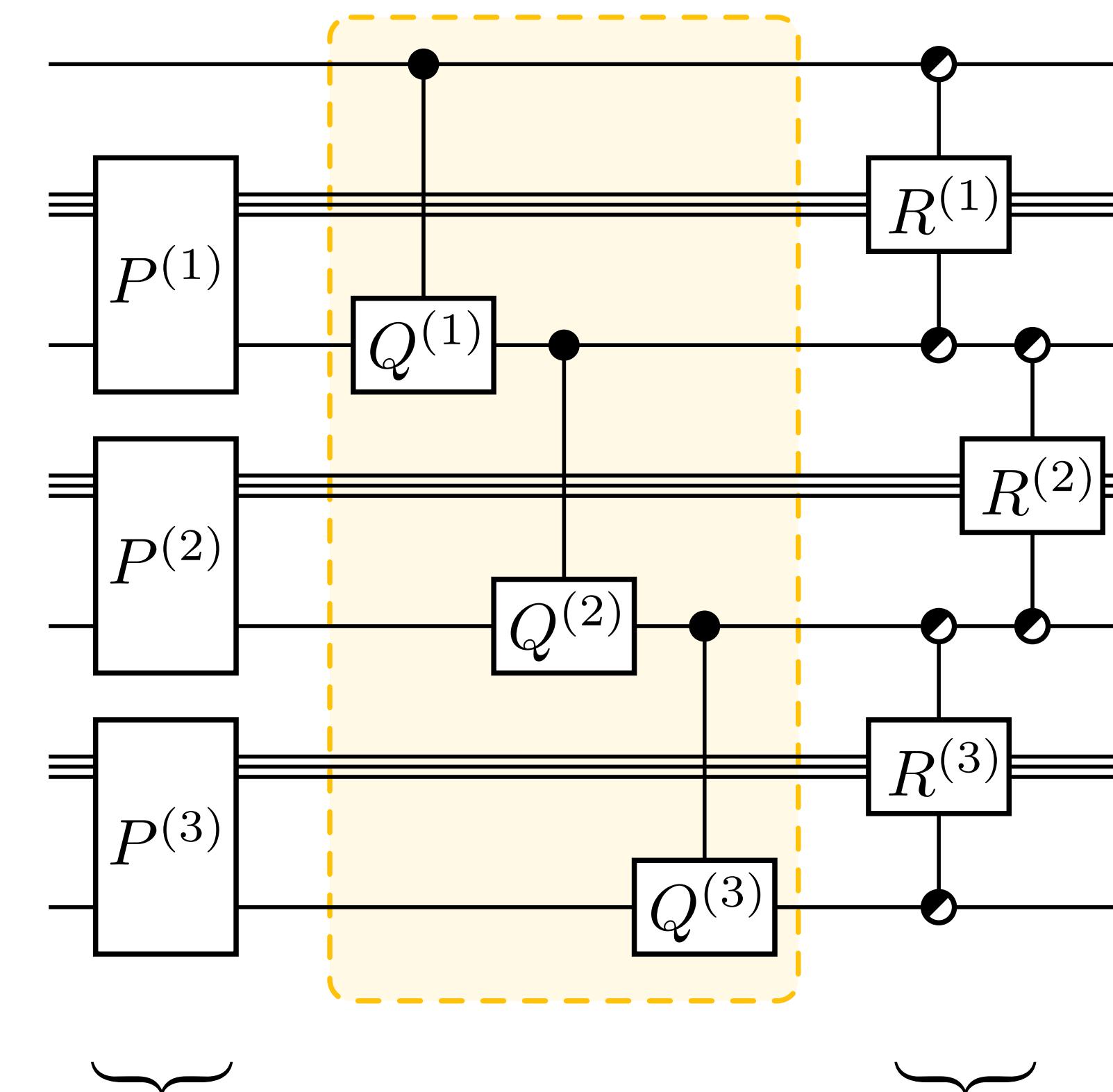
Definition. Let $\text{MN}(n)$ be the minimum depth of $C(\vec{U})$.



Definition. Let $\text{MN}(n)$ be the minimum depth of $C(\vec{U})$.

Then

$$\text{MN}(n) \leq 4^k + \text{MN}\left(\frac{n}{k}\right) + 4^k$$



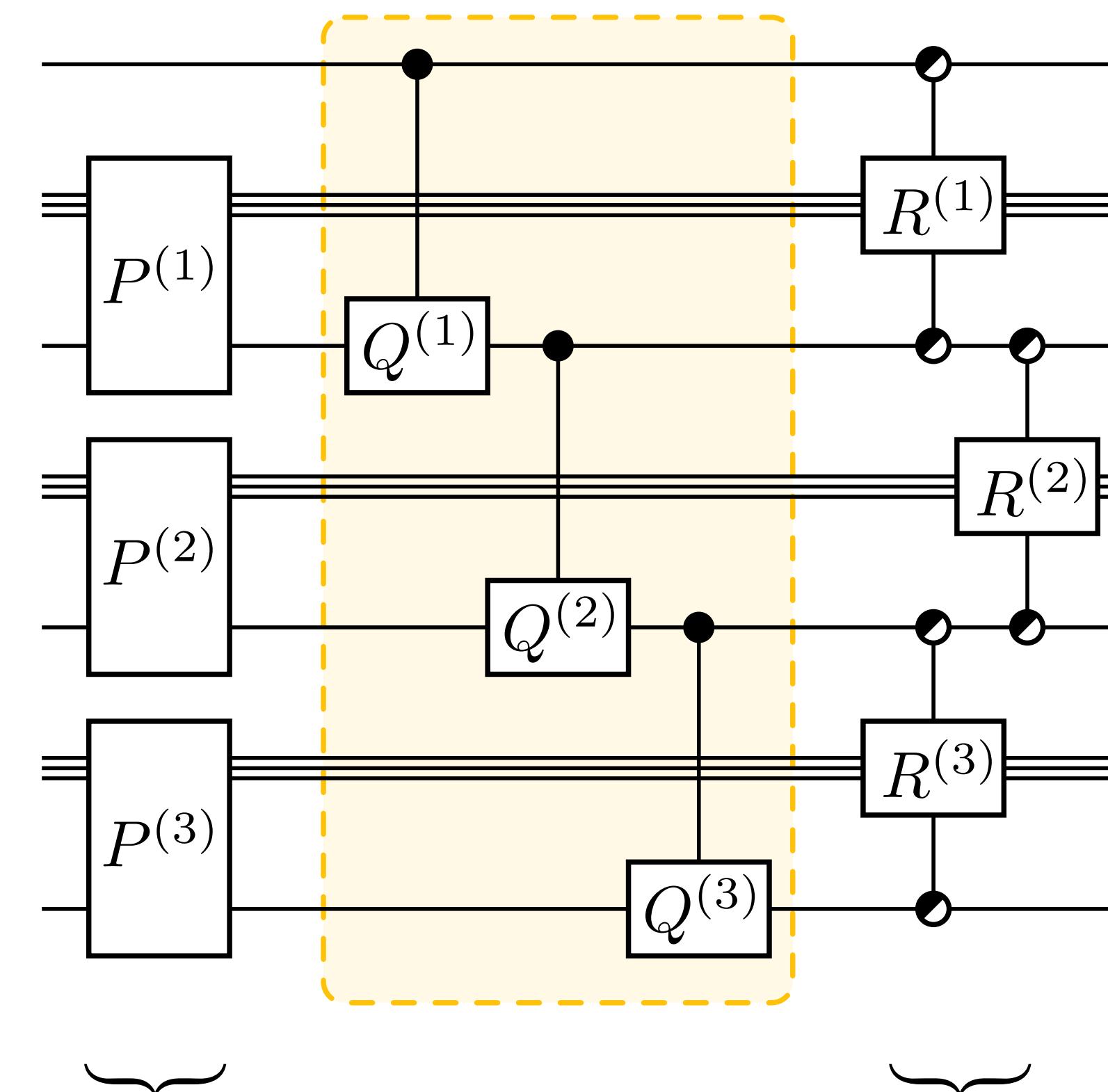
Definition. Let $\text{MN}(n)$ be the minimum depth of $C(\vec{U})$.

Then

$$\text{MN}(n) \leq 4^k + \text{MN}\left(\frac{n}{k}\right) + 4^k$$

And after ℓ iterations:

$$\text{MN}(n) \leq 2\ell \cdot 4^k + \text{MN}\left(\frac{n}{k^\ell}\right)$$



Definition. Let $\text{MN}(n)$ be the minimum depth of $C(\vec{U})$.

Then

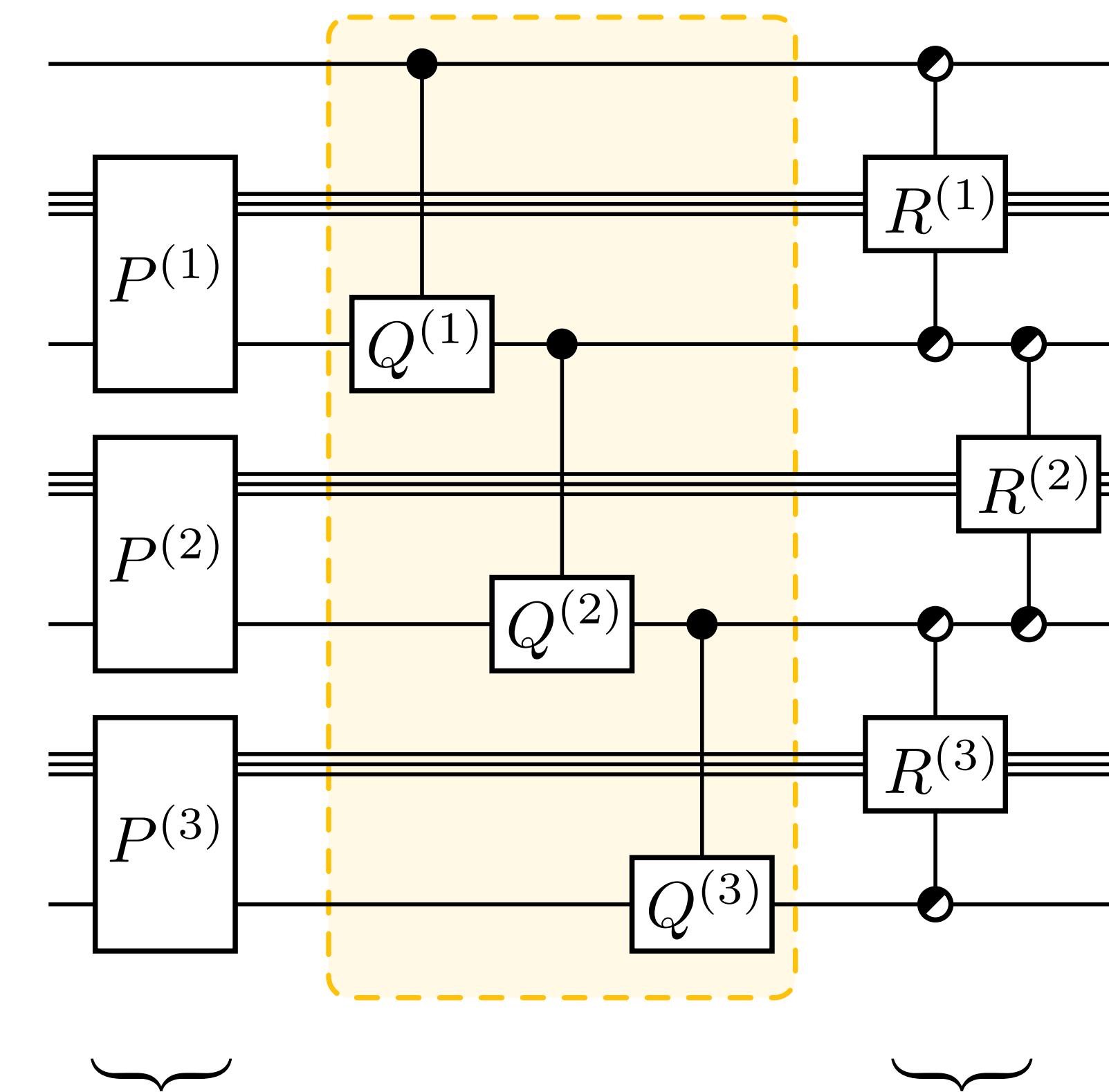
$$\text{MN}(n) \leq 4^k + \text{MN}\left(\frac{n}{k}\right) + 4^k$$

And after ℓ iterations:

$$\text{MN}(n) \leq 2\ell \cdot 4^k + \text{MN}\left(\frac{n}{k^\ell}\right)$$

Put $\ell = \Theta(\log n)$ and $k = \Theta(1)$:

$$\text{MN}(n) \leq O(\log n)$$

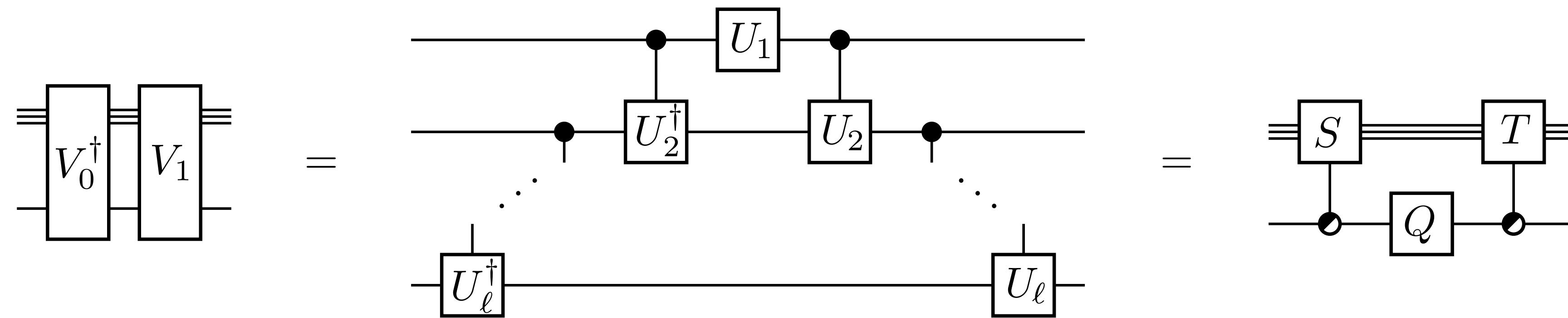


□

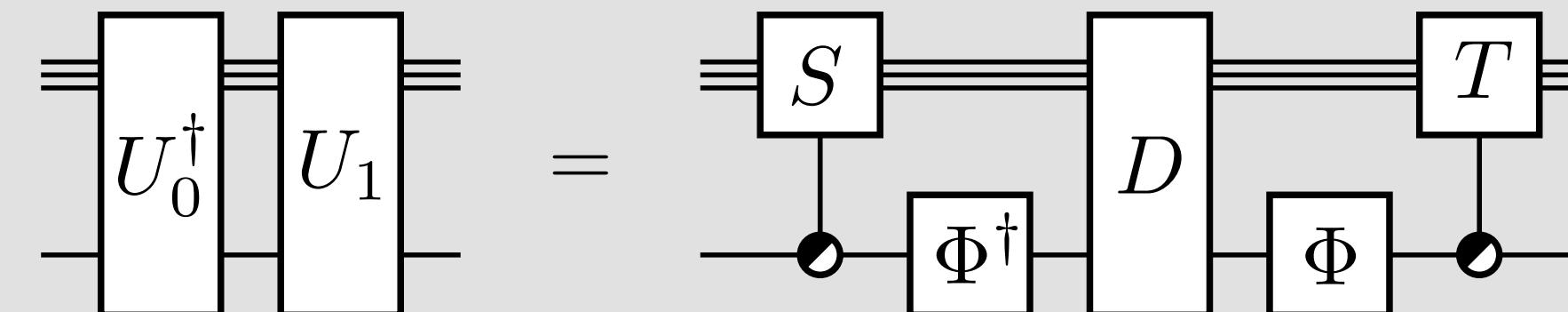
Refuting the Moore–Nilsson conjecture: improved precomputation

Under the hood: a special structure for the relevant Cosine-Sine Decomposition

For the Moore–Nilsson circuits $C(\vec{U})$,



C.f. the general case from
the CS decomposition



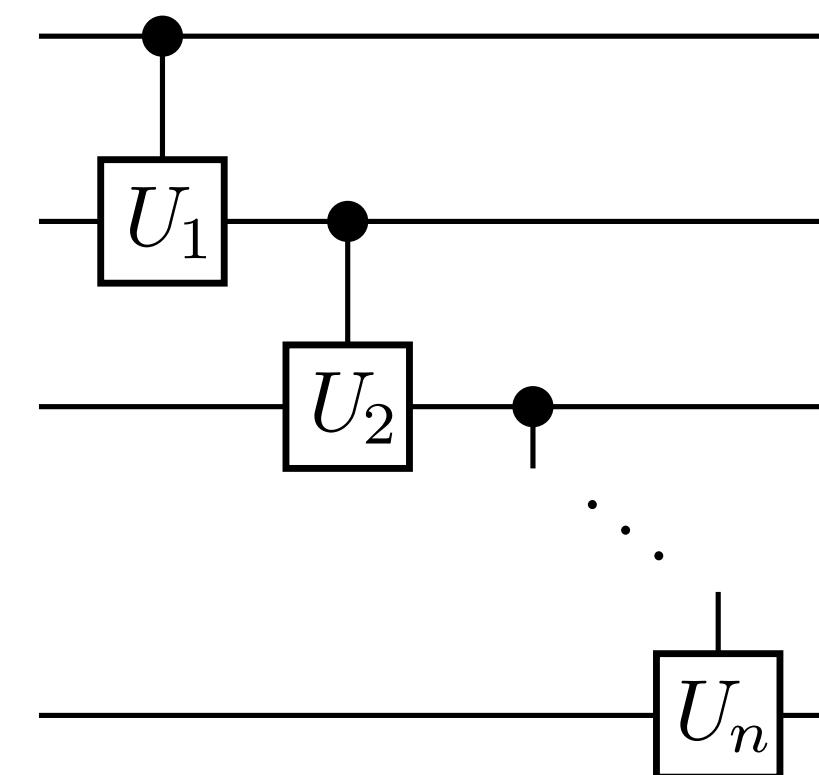
Our results

1. Moore–Nilsson unitaries have $O(\log n)$ -depth circuits

Done

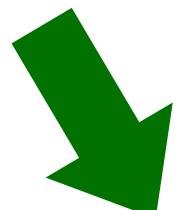
Theorem. For any 1-qubit unitaries U_1, \dots, U_n , the unitary

$$C(U_1, \dots, U_n) :=$$



Bonus: in regime of 2D geometrically-local circuits:
 $O(\sqrt{n})$ depth, $O(n)$ ancillae

Done



has an exact, ancilla-free circuit of depth $O(\log n)$.

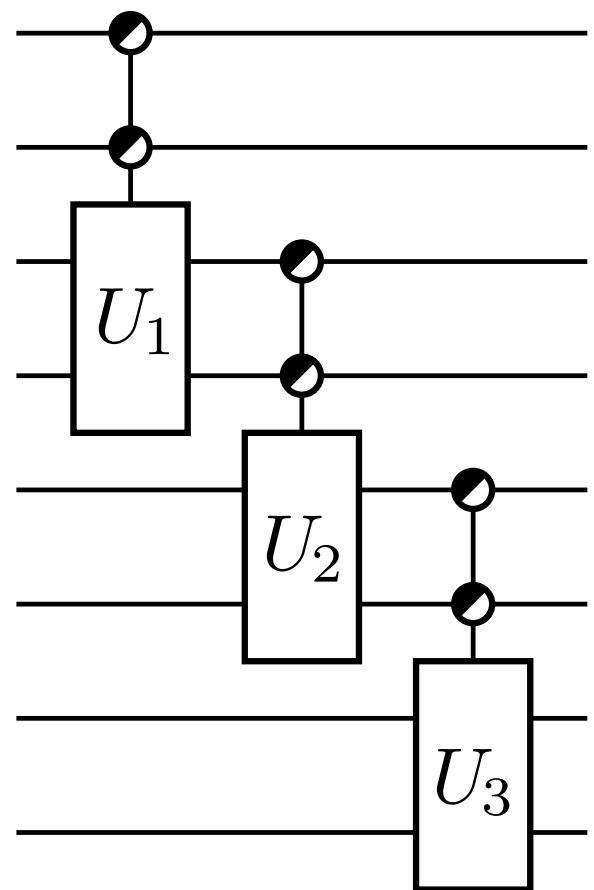
2. Depth reductions for general “control-cascade circuits”

Example corollary. For all $(2 \log n)$ -qubit unitaries U_1, \dots, U_n , the unitary $C(U_1, \dots, U_n)$ has an exact circuit of depth $O(n \log n)$ using $O(n^{3/2})$ ancillae.

Next steps

Next steps

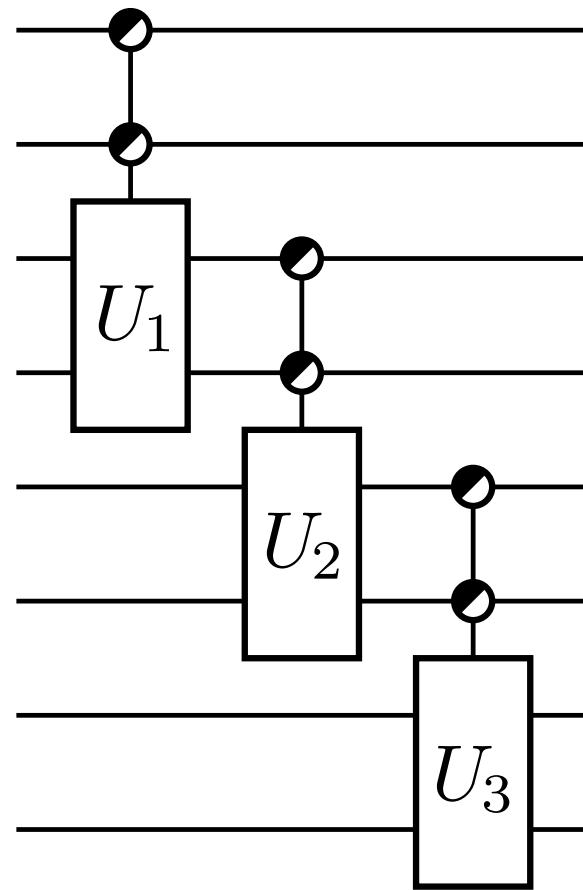
Beyond one qubit of control



Cosine-Sine
decomposition
approach already
blocked at qutrit
controls...

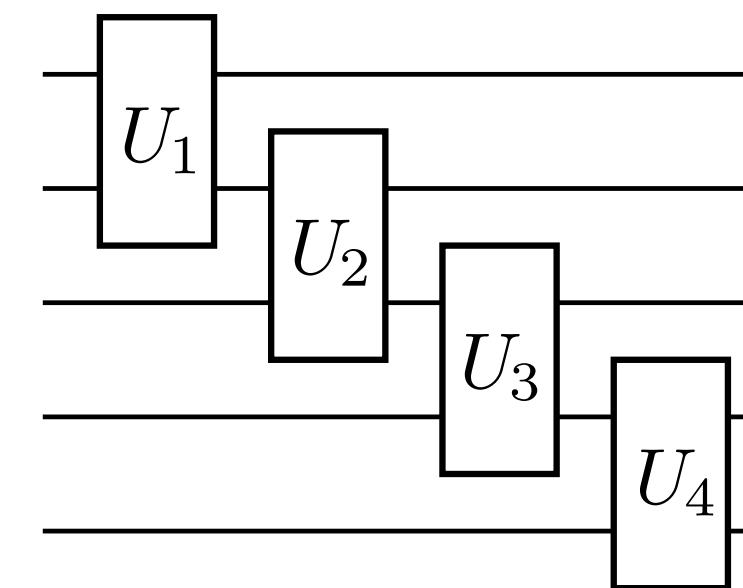
Next steps

Beyond one qubit of control



Cosine-Sine decomposition approach already blocked at qutrit controls...

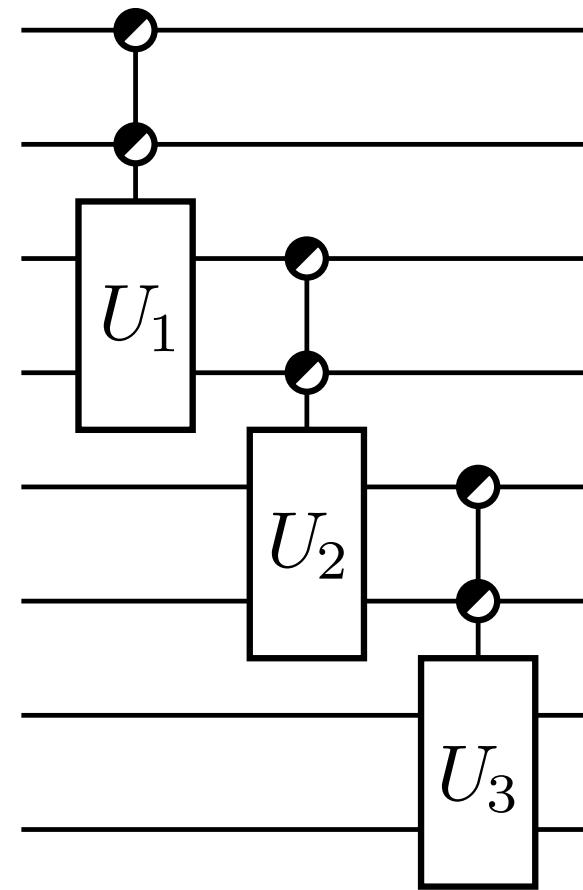
Cascades of general unitaries



Unclear how to prove a precomputation identity here...

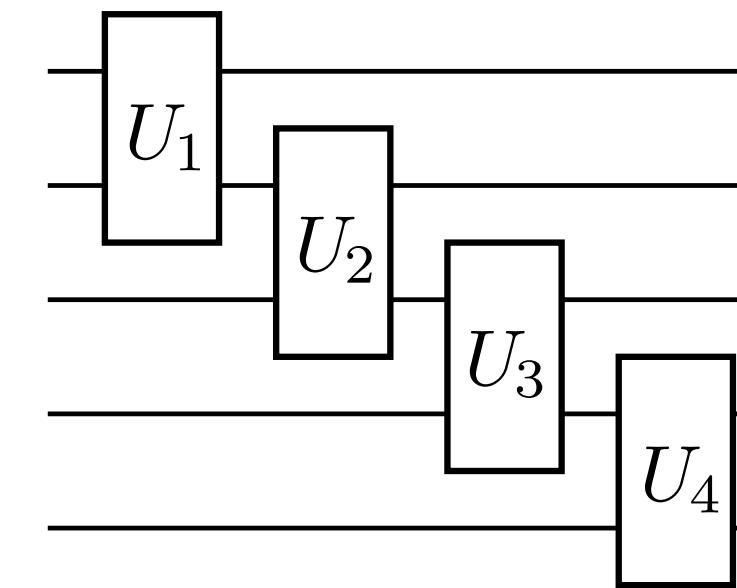
Next steps

Beyond one qubit of control



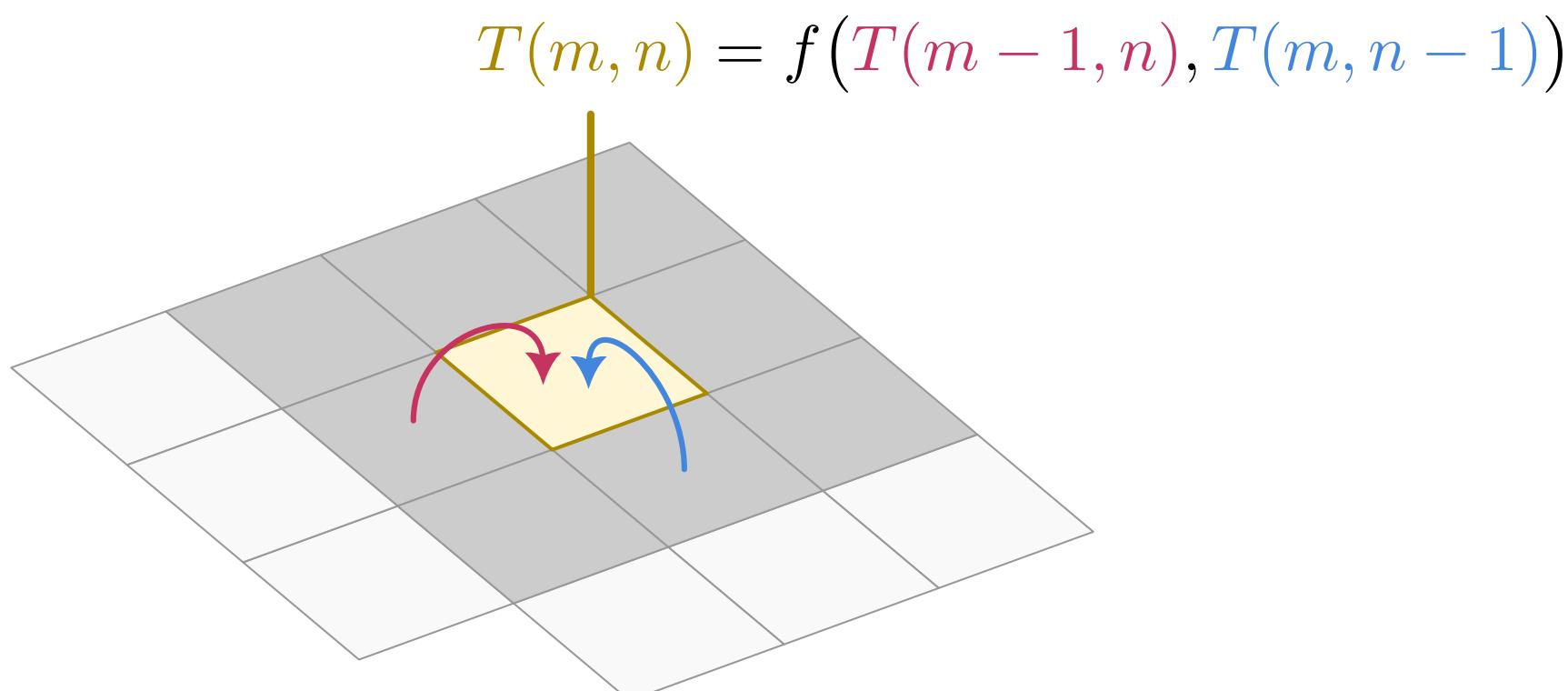
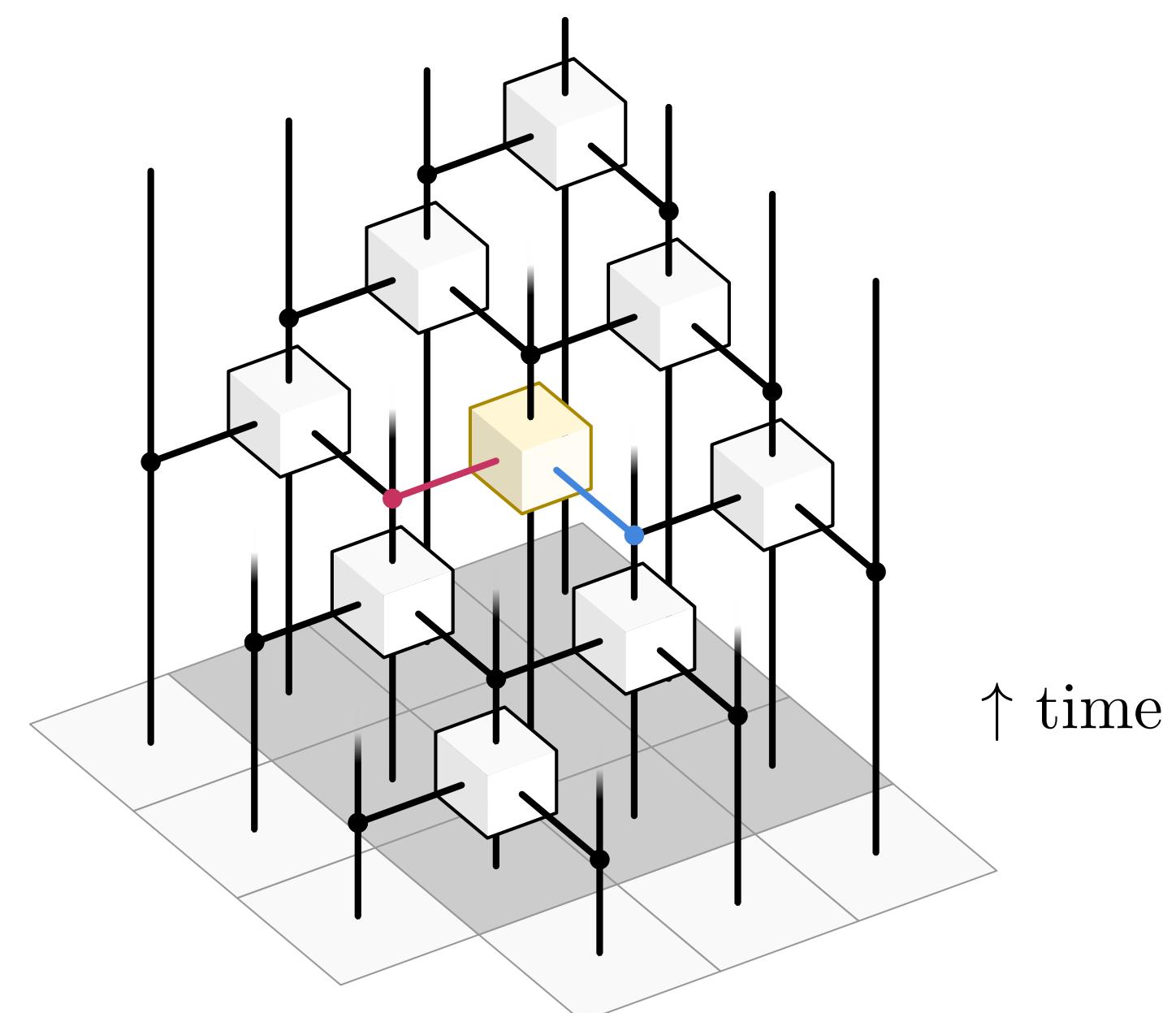
Cosine-Sine decomposition approach already blocked at qutrit controls...

Cascades of general unitaries



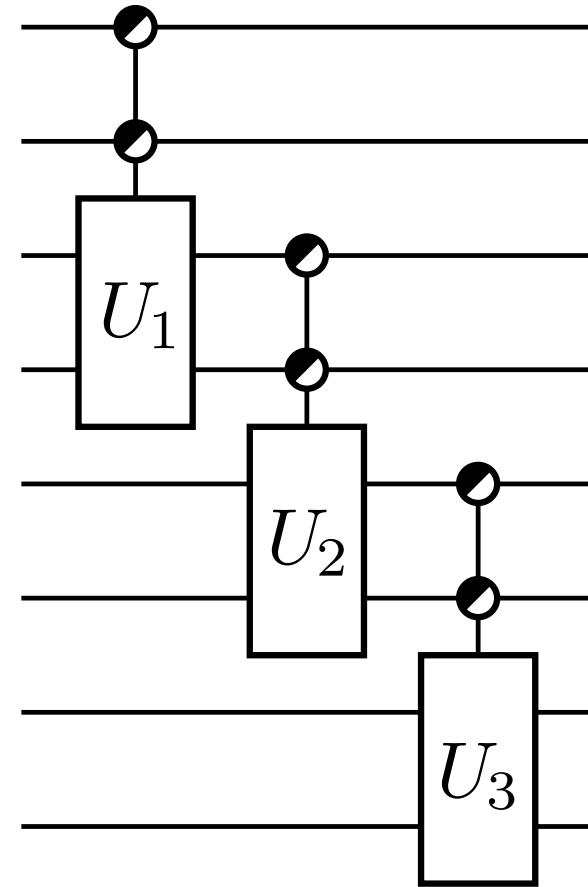
Unclear how to prove a precomputation identity here...

Quantum dynamic programming?



Next steps

Beyond one qubit of control

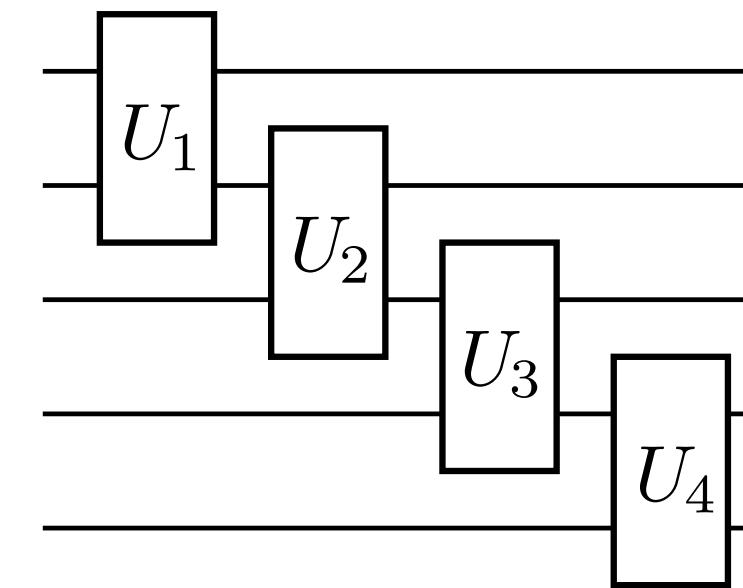


Cosine-Sine decomposition approach already blocked at qutrit controls...

Question for the audience:

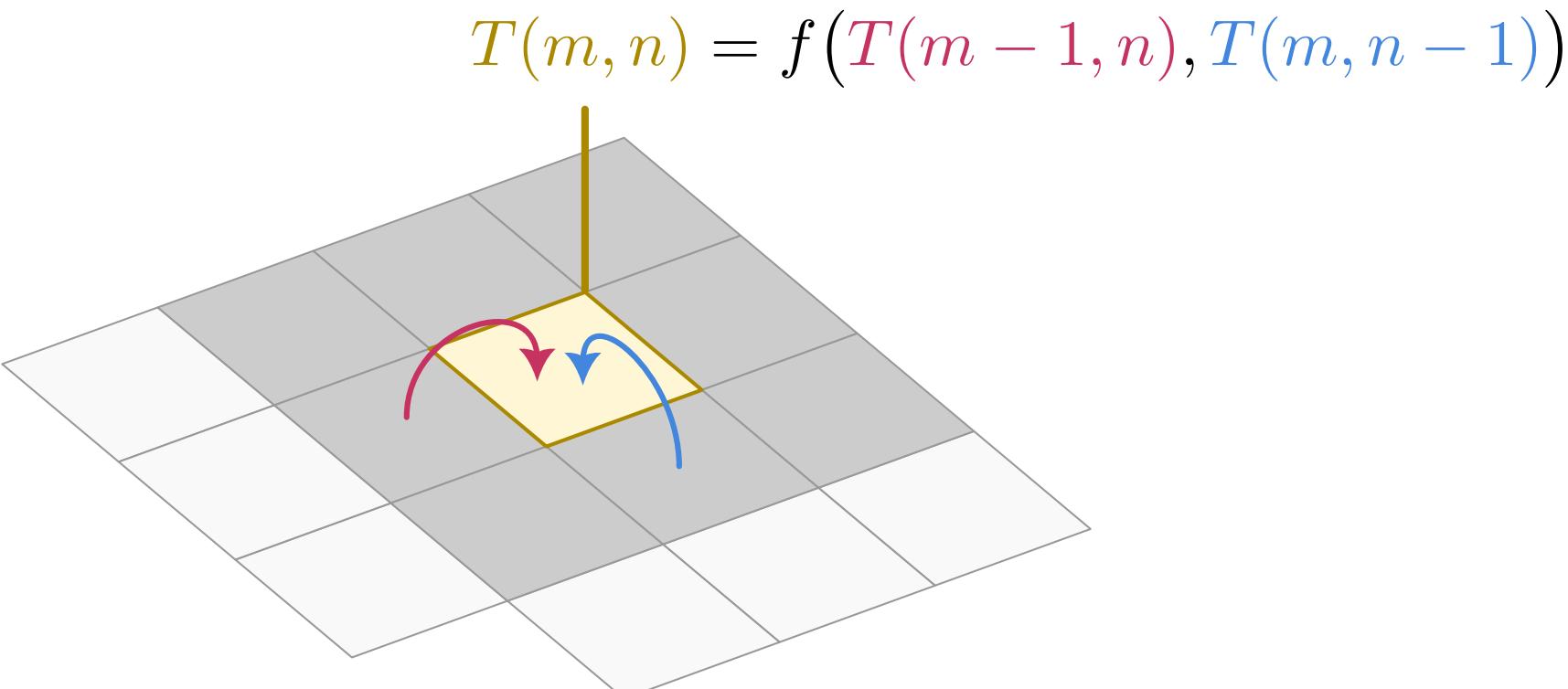
What circuits would *you* like to be parallelized?

Cascades of general unitaries

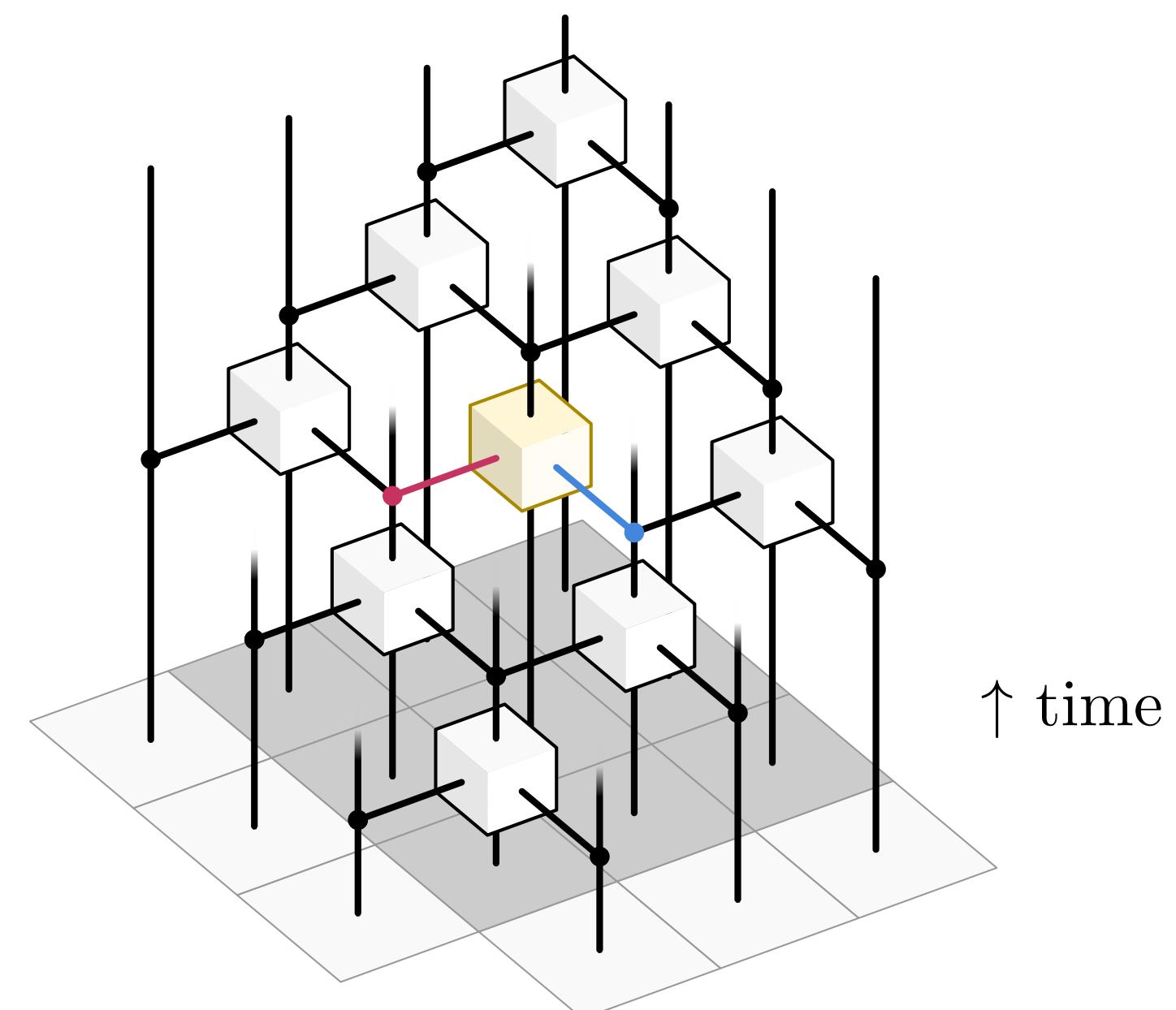


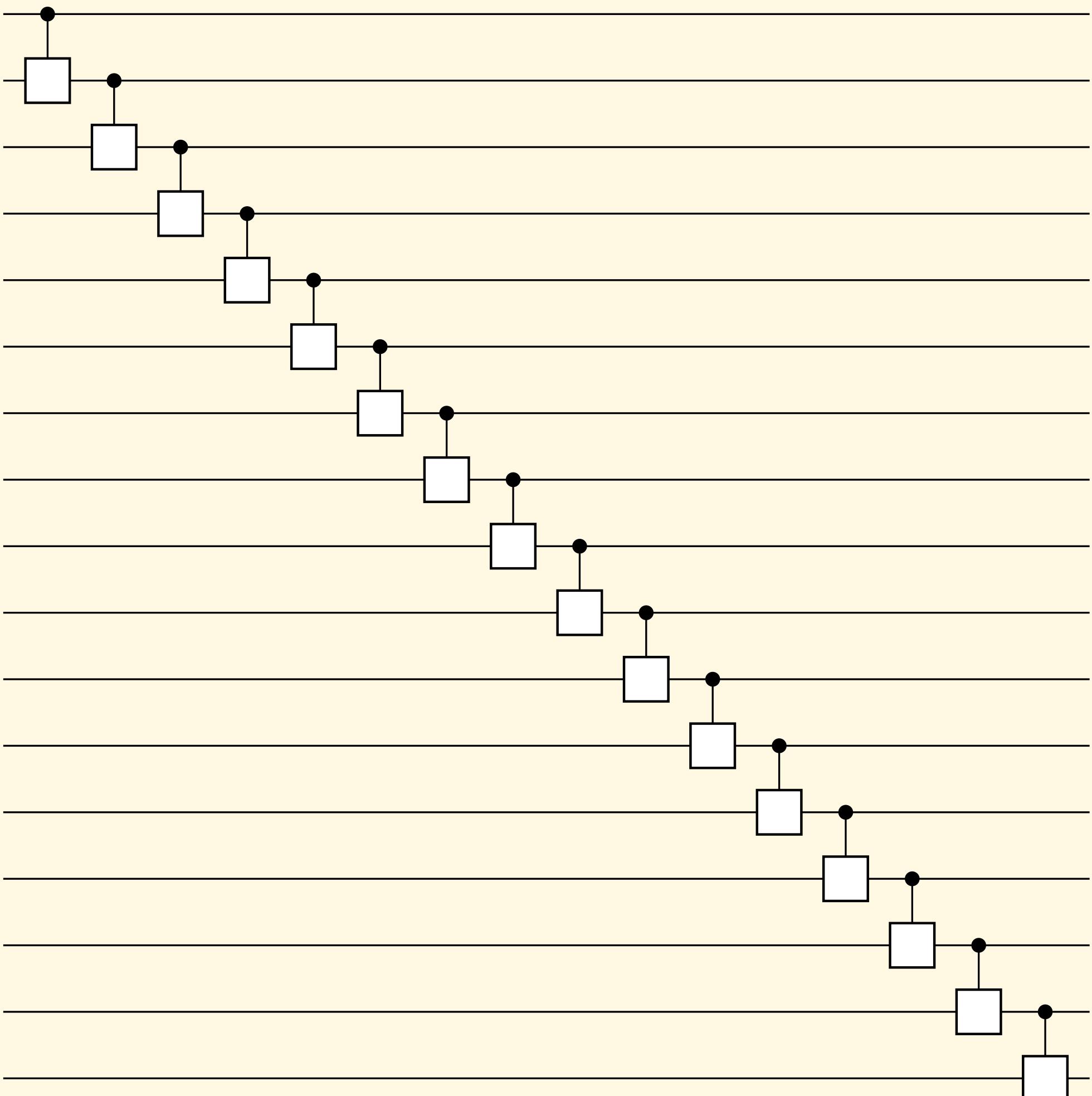
Unclear how to prove a precomputation identity here...

Quantum dynamic programming?

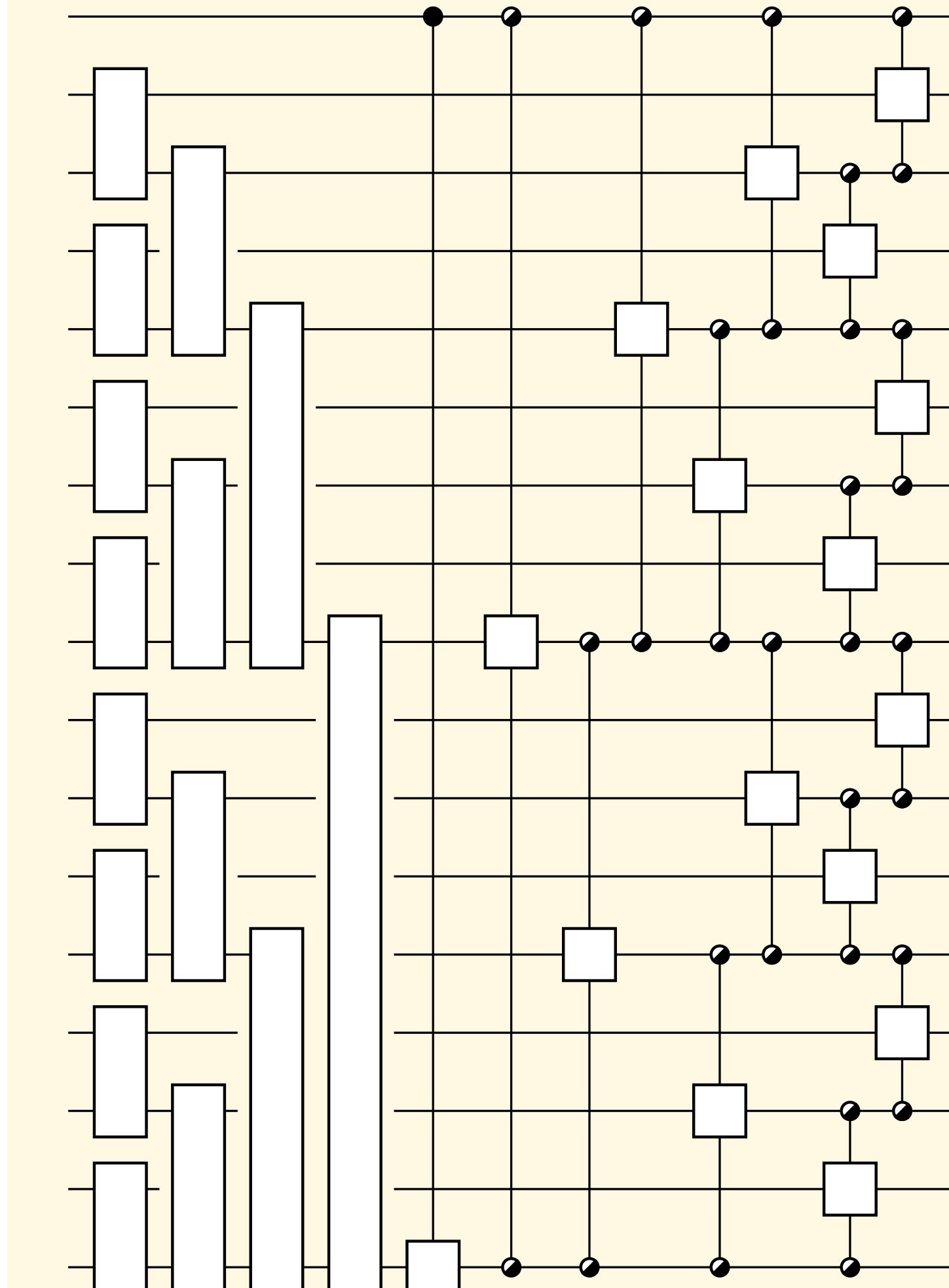


$$T(m, n) = f(T(m-1, n), T(m, n-1))$$





Thanks!



Questions?