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Classical parallelization

Guiding question. Can every program be parallelized?
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Guiding question. Can every program be parallelized?

(Guiding question (formal). Suppose f: {0,1}"* — {0,1} has a size-s circuit (s-many

gates). Can f be implemented by a circuit of depth polylog(s) and size poly(s)?
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Classical parallelization

Guiding question. Can every program be parallelized?

(Guiding question (formal). Suppose f: {0,1}"* — {0,1} has a size-s circuit (s-many

gates). Can f be implemented by a circuit of depth polylog(s) and size poly(s)?

Example.

f= ANDS

Circuit model: NC
(const. fan-in & fan-out)
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Classical parallelization

Guiding question. Can every program be parallelized?

(Guiding question (formal). Suppose f: {0,1}"* — {0,1} has a size-s circuit (s-many

gates). Can f be implemented by a circuit of depth polylog(s) and size poly(s)?

Example.

f= ANDS

Circuit model: NC
(const. fan-in & fan-out)

size: 7, depth: 7
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Classical parallelization

Guiding question. Can every program be parallelized?

(Guiding question (formal). Suppose f: {0,1}"* — {0,1} has a size-s circuit (s-many

gates). Can f be implemented by a circuit of depth polylog(s) and size poly(s)?

Example.

f= ANDS

0

0

Circuit model: NC i :
(const. fan-in & fan-out) SIZE. 7' depth: 4 SIZE. 71 depth: 3
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Classical parallelization
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Classical parallelization

Question (The NC ~p problem). If f has a circuit of size poly(n),

does f have a circuit of depth polylog(n) and size poly(n)?
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Classical parallelization

Question (The NC ~p problem). If f has a circuit of size poly(n),

does f have a circuit of depth polylog(n) and size poly(n)?

Strongly expected that NC # P; i.e., some efficient

algorithms are inherently sequential.
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Classical parallelization

Question (The NC ~p problem). If f has a circuit of size poly(n),

does f have a circuit of depth polylog(n) and size poly(n)?

Strongly expected that NC # P; i.e., some efficient

algorithms are inherently sequential.

In fact, NC # P is required by some cryptography:

- Time-lock puzzles, with applications to e.g.
decentralized auctions.
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Classical parallelization

Question (The NC ~p problem). If f has a circuit of size poly(n),

does f have a circuit of depth polylog(n) and size poly(n)?

Strongly expected that NC # P; i.e., some efficient

algorithms are inherently sequential.

In fact, NC # P is required by some cryptography:

- Time-lock puzzles, with applications to e.g.
decentralized auctions.

- Security seems independent of standard
cryptographic hardness assumptions.
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Classical parallelization

Question (The NC ~p problem). If f has a circuit of size poly(n),

does f have a circuit of depth polylog(n) and size poly(n)?

Strongly expected that NC # P; i.e., some efficient If NC = P, parallelomania! (Imagine

algorithms are inherently sequential. fully-parallel gradient descent...)

In fact, NC # P is required by some cryptography:

- Time-lock puzzles, with applications to e.g.
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does f have a circuit of depth polylog(n) and size poly(n)?

Strongly expected that NC # P; i.e., some efficient If NC = P, parallelomania! (Imagine
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Classical parallelization

Question (The NC ~p problem). If f has a circuit of size poly(n),

does f have a circuit of depth polylog(n) and size poly(n)?

Strongly expected that NC # P; i.e., some efficient If NC = P, parallelomania! (Imagine
algorithms are inherently sequential. fully-parallel gradient descent...)
In fact, NC # P is required by some cryptography: NC = P is difficult.

- Time-lock puzzles, with applications to e.g.
decentralized auctions.

- Security seems independent of standard
cryptographic hardness assumptions.
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Classical parallelization

Question (The NC ~p problem). If f has a circuit of size poly(n),

does f have a circuit of depth polylog(n) and size poly(n)?

Strongly expected that NC # P; i.e., some efficient If NC = P, parallelomania! (Imagine
algorithms are inherently sequential. fully-parallel gradient descent...)
In fact, NC # P is required by some cryptography: NC = P is difficult.
- Time-lock puzzles, with applications to e.g. - Open since the birth of circuit
decentralized auctions. complexity [Cook 81]

- Security seems independent of standard
cryptographic hardness assumptions.

Quantum Precomputation | QIP 2026 | slides: slote.org/qip


https://dl.acm.org/doi/abs/10.1145/3588287.3588301
https://ieeexplore.ieee.org/document/366876/

Classical parallelization

Question (The NC ~p problem). If f has a circuit of size poly(n),

does f have a circuit of depth polylog(n) and size poly(n)?

Strongly expected that NC # P; i.e., some efficient If NC = P, parallelomania! (Imagine
algorithms are inherently sequential. fully-parallel gradient descent...)
In fact, NC # P is required by some cryptography: NC = P is difficult.
- Time-lock puzzles, with applications to e.g. - Open since the birth of circuit
decentralized auctions. complexity [Cook 81]
- Security seems independent of standard - Best lower bound is
cryptographic hardness assumptions. (3 — o(1))log(n) [Hastad 93]
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Classical parallelization

Question (The NC ~p problem). If f has a circuit of size poly(n),

does f have a circuit of depth polylog(n) and size poly(n)?

Strongly expected that NC # P; i.e., some efficient If NC = P, parallelomania! (Imagine
algorithms are inherently sequential. fully-parallel gradient descent...)
In fact, NC # P is required by some cryptography: NC = P is difficult.
- Time-lock puzzles, with applications to e.g. - Open since the birth of circuit
decentralized auctions. complexity [Cook 81]
- Security seems independent of standard - Best lower bound is
cryptographic hardness assumptions. (3 — o(1))log(n) [Hastad 93]

What about the

quantum version?
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Quantum parallelization: a fundamental difference?
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Quantum parallelization: a fundamental difference?

Example (Classical). With f, gy, g, : {0,1}" — {0,1} all requiring T(n) depth, consider...
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Quantum parallelization: a fundamental difference?

Example (Classical). With f, gy, g, : {0,1}" — {0,1} all requiring T(n) depth, consider...

Naive I(n) + I(n) Improved o(l) + T(n) + O(1)

2T(n) depth; = Tn) + 0(1)
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Quantum parallelization: a fundamental difference?

Example (Classical). With f, gy, g, : {0,1}" — {0,1} all requiring T(n) depth, consider...

Naive I(n) + I(n) Improved o(l) + T(n) + O(1)

2T(n) depth; = Tn) + 0(1)

Upshot: a precomputation trick halved computation time
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Quantum parallelization: a fundamental difference?

Example (Quantum). With U, V,, V| n-qubit unitaries requiring 7(n) depth, consider...
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Quantum parallelization: a fundamental difference?

Example (Quantum). With U, V,, V| n-qubit unitaries requiring 7(n) depth, consider...

_ °?

| y) - °

Apparent obstruction

from no-cloning

Naive I(n) + T(n)
depth: — 2T
Notation.
I T 1T _ (%0
= E B = VAN = RVA = - 0 Vl




The Moore—Nilsson conjecture

Parallel Quantum Computation
and Quantum Codes

August 17, 1998

Cristopher Moore! and Martin Nilsson?

! Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501
moore@santafe.edu
> Chalmers Tekniska Hogskola and University of Géteborg, Géteborg, Sweden
martin@fy.chalmers.se

Abstract. We propose a definition of QINC, the quantum analog of the
efficient parallel class NC. We exhibit several useful gadgets and prove
that various classes of circuits can be parallelized to logarithmic depth,
including circuits for encoding and decoding standard quantum error-
correcting codes, or more generally any circuit consisting of controlled-
not gates, controlled m-shifts, and Hadamard gates. Finally, while we note
the Quantum Fourier Transform can be parallelized to linear depth, we
conjecture that an even simpler ‘staircase’ circuit cannot be parallelized
to less than linear depth, and might be used to prove that QNC < QP.
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martinefy.chalners CORJECtuUre (Moore and Nilsson, 1998). The following unitary has minimum depth

Q(n) when all 1-qubit unitaries U, ..., U, are not diagonal or anti-diagonal.

Abstract. We propose a definition of QINC
efficient parallel class NC. We exhibit sever T

that various classes of circuits can be parall

including circuits for encoding and decodin _ Ul T

correcting codes, or more generally any circ

not gates, controlled m-shifts, and Hadamard C(U Is onns Un)
the Quantum Fourier Transform can be par U 2 ?
conjecture that an even simpler ‘staircase’ ci
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Quantum Precomputation | QIP 2026 | slides: slote.org/qip



The Moore—Nilsson conjecture

- Seemingly no classical analogue.
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The Moore—Nilsson conjecture

- Seemingly no classical analogue.

Parallel Quantum Computation - Appealing candidate for “inherently sequential” unitary.
and Quantum Codes - Simple quantum circuits cannot be parallelized?
August 17, 1998 - Large coherence times necessary for quantum computing?
Cristopher Moore! and Martin Nilsson? - Schemes for verifying device depth?
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The Moore—Nilsson conjecture highlights dual

motivations for studying quantum parallelization:
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The Moore—Nilsson conjecture highlights dual

motivations for studying quantum parallelization:

- Need for quantum parallelization techniques: can we at least

recover quantum versions of classical parallelization ideas?
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The Moore—Nilsson conjecture highlights dual

motivations for studying quantum parallelization:

- Need for quantum parallelization techniques: can we at least

recover quantum versions of classical parallelization ideas?

- Depth lower bounds for quantum problems? Maybe it’s

easier to prove quantum transformations are inherently

sequential? Separate quantum-input QNC trom BQP?
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Our results

1. Moore—Nilsson unitaries have O(log n)-depth circuits
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Our results

1. Moore—Nilsson unitaries have O(log n)-depth circuits

Theorem. For any 1-qubit unitaries Uy, ..., U, , the unitary

T
{34

c,...,U)

]
5
_.

N
U -

has an exact, ancilla-free circuit of depth O(logn).
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Our results

1. Moore—Nilsson unitaries have O(log n)-depth circuits

Theorem. For any 1-qubit unitaries Uy, ..., U, , the unitary

T Bonus: in regime of 2D

= 1% T geometrically-local circuits:

O(/n) depth, O(n) ancillae
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has an exact, ancilla-free circuit of depth O(logn).
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Our results

1. Moore—Nilsson unitaries have O(log n)-depth circuits

Theorem. For any 1-qubit unitaries Uy, ..., U, , the unitary
T Bonus: in regime of 2D
1% T geometrically-local circuits:
CUy,....U,) = Us—o O(\/ﬁ) depth, O(n) ancillae
|
Unl—

has an exact, ancilla-free circuit of depth O(logn).

2. Depth reductions for general “control-cascade circuits”

Quantum Precomputation | QIP 2026 | slides: slote.org/qip



Our results

1. Moore—Nilsson unitaries have O(log n)-depth circuits

Theorem. For any 1-qubit unitaries Uy, ..., U, , the unitary
T Bonus: in regime of 2D
1% T geometrically-local circuits:
CUy,....U,) = Us—o O(\/ﬁ) depth, O(n) ancillae
|
Unl—
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Example corollary. For all (21logn)-qubit unitaries Uy, ..., U, the unitary
C(Uy,...,U,) has an exact circuit of depth O(nlogn) using O(n*?) ancillae.

Quantum Precomputation | QIP 2026 | slides: slote.org/qip



Our results

1. Moore—Nilsson unitaries have O(log n)-depth circuits

Theorem. For any 1-qubit unitaries Uy, ..., U, , the unitary
T Bonus: in regime of 2D
1% T geometrically-local circuits:
CUy,....U,) = Us—o O(\/ﬁ) depth, O(n) ancillae
|
Unl—

has an exact, ancilla-free circuit of depth O(logn).

C.f. the naive depth of

2. Depth reductions for general “control-cascade circuits” Sen?)

Example corollary. For all (21logn)-qubit unitaries Uy, ..., U, the unitary
C(Uy,...,U,) has an exact circuit of depth O(nlogn) using O(n*?) ancillae.

Quantum Precomputation | QIP 2026 | slides: slote.org/qip



Our results

1. Moore—Nilsson unitaries have O(log n)-depth circuits

Theorem. For any 1-qubit unitaries Uy, ..., U, , the unitary
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Quantum precomputation: some intuition
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Quantum precomputation: some intuition

Consider a cascade

of m-many k-qubit

controlled unitaries
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Quantum precomputation: some intuition

Consider a cascade

Fact ([STYYZ23|). Ancilla-free circuits for general of m-many k-qubit

k-qubit unitaries have worst-case depth @(4k/k). controlled unitaries
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Quantum precomputation: some intuition

Consider a cascade

Fact ([STYYZ23|). Ancilla-free circuits for general of m-many k-qubit

k-qubit unitaries have worst-case depth @(4k/k). controlled unitaries

N
P
4+
~
P
4+
N
-
X
3
N
P
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Quantum precomputation: some intuition

| Consider a cascade
Fact ([STYYZ23|). Ancilla-free circuits for general of m-many k-qubit

k-qubit unitaries have worst-case depth @(4k/k). controlled unitaries

Observation: diagonal unitaries are pretty cheap
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Quantum precomputation: some intuition

| Consider a cascade
Fact ([STYYZ23|). Ancilla-free circuits for general of m-many k-qubit

k-qubit unitaries have worst-case depth @(4k/k). controlled unitaries

Observation: diagonal unitaries are pretty cheap

Fact ([STYYZ23|). Ancilla-free circuits for diagonal
k-qubit unitaries have worst-case depth @(Zk/k).

N
P
4+
~
P
4+
N
-
X
3
N
P
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Quantum precomputation: some intuition

| Consider a cascade
Fact ([STYYZ23|). Ancilla-free circuits for general of m-many k-qubit

k-qubit unitaries have worst-case depth @(4k/k). controlled unitaries

Observation: diagonal unitaries are pretty cheap

1/ (2)
Fact ([STYYZ23|). Ancilla-free circuits for diagonal
k-qubit unitaries have worst-case depth @(Zk/k).
1/ (3)
Goal: make the V’s diagonal somehow
4+ 45+ 4 ~  om-4
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Quantum precomputation: some intuition

First attempt: diagonalization?

Original circuit

1V (2)
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Quantum precomputation: some intuition

First attempt: diagonalization?

Original circuit Diagonalized via v = yOpOyOT
() ool |po] o
40) 7@l | p@| (@1
() o) [pe| (e
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Quantum precomputation: some intuition

First attempt: diagonalization?

Original circuit

Diagonalized via V® = gWpWyW1

D)

[ (3T

Rearrange

Ol DD |t
[(2) D@ @)1
[ (3) DO @)
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Quantum precomputation: some intuition

First attempt: diagonalization?

Original circuit

Diagonalized via V® = gWpWyW1

D)

[ (3T

Rearrange

Ol | DD [t
I
[ (2) DG @t
I
[7(3) D®) U(3)Tf
4k
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Quantum precomputation: some intuition

First attempt: diagonalization?

Original circuit

Diagonalized via V® = gWpWyW1

Rearrange

(Dt

D(2)

[ (2)t

[7(1)
I
DO |{g@1 [7(2)
I
73| |p®) U(B)Tf [7(3)
4k
“Precomputation” \J

D)

[ (3)T
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Quantum precomputation: some intuition

First attempt: diagonalization?

Original circuit Diagonalized via V¥ = yWp®OyW? Rearrange
Y46) ool | po] ot ool | po] ot
() 7@l | p@| |yt [(2) | @1

[ (3)T

3 UG DO |G [/ (3) /\ D)

4+ m - 2K

“Precomputation” \J
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Quantum precomputation: some intuition

First attempt: diagonalization?

Original circuit Diagonalized via VW = yWpWy®1 Rearrange
I I I
Ev(l) N ool | po] ot ool | po] ot
I I I
40) B 7@l | p@| |yt B [7(2) DO| |r@1
I I I

V<3>E 73| |p®) U(S)TE [7(3) D) U(S)TE

| | /\ |

4+ m - 2%
“Precomputation”\J N Improvement!
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Quantum precomputation: some intuition

First attempt: diagonalization?

Original circuit

Problem!

. . . - V(i) 7 1 m - 4%
Diagonalized via VW = yWp®OyW? Rearrange
oo [po] s ool [po] o

7| | p@| @1 (2 p@| @1
ool [p®)| e [7(3) /\ DO| 731

4+ m - 2K

“Precomputation” —___/ N Improvement!
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Quantum precomputation: a better identity
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Quantum precomputation: a better identity

Lemma (Precomputation identity). For any many-qubit
Uy, U,, there are P, diagonal D, and R such that

—0
—@
—@
—

|
Il
v
Il

where @ a universal (fixed) unitary.
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Quantum precomputation: a better identity

Lemma (Precomputation identity). For any many-qubit

Uy, U,, there are P, diagonal D, and R such that C.f. Naive diagonalization

—0
—9
—9
—
—9
Il
|
Ii
—9
Il

||

I
=

M
<
-
3
!

where @ a universal (fixed) unitary.
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Quantum precomputation: applying the identity
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Quantum precomputation: applying the identity

= - ) POl | p® Rf) ---------- \
— o ® ! |
T ) — T RT(Q) :
%>o PP )

- L M S

re| pe| | DG) S
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Quantum precomputation: applying the identity

— = R(l)

[7(1) p(1) D) L

— — P
T — = T }j(;) =
[](2) p2) D(2) é
— D

T — = T RT(B)

[J(3) pB3) D3 L

— — 0
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Quantum precomputation: applying the identity

= = R(1)

[7(1) pQ) D) L

— — 0
T — = T }j(;) =
[](2) p2) D(2) L
— o

T = = T RT(B)

[J(3) pB3) D3 L

— — 0

Original circuit: O(m4"*) depth
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Quantum precomputation: applying the identity

= = R(1)
[7(1) pQ) D) L
— — )
I ! I
— — R(Q)E
[J(2) p2) D(2) L
— <)
I I I
— = RG)
[J(3) P(3) D3) L
— — )
Original circuit: O(m4"*) depth New circuit: O4* + m2%) depth
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Quantum precomputation: applying the identity

Original circuit: O(m4"*) depth

Example. Put m = n, k = log(n).

— R()
_p(l) D) L
=1 I
= R2)E
P2) D(2) L
i =1 I
B (3) (3) i
Iy "

New circuit: O4* + m2%) depth

Then depths are O(n°) (naive) vs. O(n?) (using precomputation)

Quantum Precomputation | QIP 2026 | slides:

slote.org/qip



Quantum precomputation: with ancillae




Quantum precomputation: with ancillae

—0

= o o— R(1)
P - £
'
O
1 = 1
D[()re)p D((:Ie)ar
= 4! 0 R()
— 3 —@ 0
X
R
2 — 2
Dére)p Dc(:le)ar
= 4 o— RG)
P(S) Ve
) E !
X
O
X
Dires Dge




Quantum precomputation: with ancillae

Original circuit: O (m4k) depth

—0

= o o— R(1)
P - £
'
O
1 = 1
D[()re)p D((:Ie)ar
= 4! 0 R()
— 3 —@ 0
X
R
2 — 2
Dére)p Dc(:le)ar
= 4 o— RG)
P(S) Ve
) E !
X
O
X
Dires Dge




Quantum precomputation: with ancillae

Original circuit: O (m4k) depth

With ancillae: O (Zk/ ’ 4 mk) depth

using O(m2"%) ancillae

—0

= 2 o— R(1)
P - L
'
O
1 = 1
DF(WG)P D((:Ie)ar
= 2 2 R(2)
— S -9 o
X
O
2 - 2
Dére)p Dc(:le)ar
= 0 o— R(3)
P3) ¢
) E !
X
O
3 — 3
DF(WE)P Dc(:le)ar




Quantum precomputation: with ancillae

—a
—0
—a

= = 2 o— R(1)
Ut P < L
— T — o Pre o
e
i
= 1 = (1)
U(Z) D;()re)p Dclear
T Example corollary. For all (21logn)-qubit unitaries Uy, ..., U,, the unitary
(3) = C(Uy, ..., U,) has an exact circuit of depth O(nlogn) using O(n>?) ancillae
v L (vs. the naive depth of 5(712))
1 U\Fe/ I 1 I 1 /), 7 |
| prep | | | | clear |
Original circuit: O (m4k) depth = - o— R(3)
PG) < L
S
With ancillae: O (2k/2 + mk) depth H® g )
using O(m2"%) ancillae P clear




Precomputation identity: proof
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Precomputation identity: proof
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Precomputation identity: proof
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Precomputation identity: proof

_Uo U] Ul_
!
_Uo ngUl
= S T
U
O l ol d l
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Precomputation identity: proof

Fact (Cosine-Sine Decomposition |e.g. PW94]). For

. U, U
any unitary U = < e
U21 U22

0 S,) \Uy Up)\O0 T,)] \Z, -X

where X, 2, are the singular value matrices of Uy,

), there are unitaries §, T; s.t.

and U,, respectively.

Uo| (U] |UA
Uy UJ Uy

= S T
Uo

BT

O,

I

Cosine-Sine decomposition
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https://doi.org/10.1016/0024-3795(94)90446-4

Precomputation identity: proof

—0
—@

O— e
Il

!
S
_Uo Ul_ _Uo | ~ D .
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Precomputation identity: proof

—0
—¢

O— e
Il

— <o
Il
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—0

Precomputation identity: proof

O— e

— <o

S
—UO L ol P
I LT
== S THSTE
. “Lato—e
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—0

Precomputation identity: proof

O— e

— <o

S
—UO L ol P
I LT
== S THSTE
. “Lato—e

O— o
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Our results

1. Moore—Nilsson unitaries have O(log n)-depth circuits

Theorem. For any 1-qubit unitaries Uy, ..., U, , the unitary
T Bonus: in regime of 2D
1% T geometrically-local circuits:
CUy,....U,) = Us—o O(\/ﬁ) depth, O(n) ancillae
|
Done U~

‘ has an exact, ancilla-free circuit of depth O(logn).

2. Depth reductions for general “control-cascade circuits”

Example corollary. For all (21logn)-qubit unitaries Uy, ..., U, the unitary
C(Uy,...,U,) has an exact circuit of depth O(nlogn) using O(n*?) ancillae.
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Our results

1. Moore—Nilsson unitaries have O(log n)-depth circuits

t Theorem. For any 1-qubit unitaries Uy, ..., U, , the unitary
U 5 T Bonus: in regime of 2D
\ 1% T geometrically-local circuits:
ext cCU,....U) = Uzj—* O(\/ﬁ) depth, O(n) ancillae
|
Unl—

has an exact, ancilla-free circuit of depth O(logn).

2. Depth reductions for general “control-cascade circuits”

Example corollary. For all (21logn)-qubit unitaries Uy, ..., U, the unitary
C(Uy,...,U,) has an exact circuit of depth O(nlogn) using O(n*?) ancillae.
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Refuting the Moore—Nilsson conjecture

———————————

Step 1. Group LY

control-U’s into : T ___________

blocks \ ; :' T

___________

___________

——

k-many Control-U’s per block
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Refuting the Moore—Nilsson conjecture

———————————

Step 1. Group LY

I
. I
control-U’s into : T ________ —v®
| _ T
I
I

blocks \ ; :' T

___________

e
|
—Q

L
_____ o i I
1 ]
: T Ve
___________
k-many Control-U’s per block m = n/k different VV’s
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Refuting the Moore—Nilsson conjecture

. . o Step 2. Prove a better
Lemma (Precomputation for Moore—Nilsson circuits). o ,
precomputation identity

There exist unitaries P, Q,R on 7,1, and £ — 1 qubits

respectively so that
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Refuting the Moore—Nilsson conjecture

. . o Step 2. Prove a better
Lemma (Precomputation for Moore—Nilsson circuits). o ,
precomputation identity

There exist unitaries P, Q,R on 7,1, and £ — 1 qubits

respectively so that

T (.f. generic precomputation identity
19— 7 AR A
U2 ? ~ EP RE :U() U1: : :P D . i_

] RNy

for D diagonal and ® a universal (fixed)

unitary.
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EV(l)
7
1/ (2)
!
V(3)=
I

I Ui+ 1

With = ol = =Y - r JIE
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) (1) N p) Rf) pm——————
— _ (1) i |
T & (T ! T :
= : ROE
1/ (2) : p2) L |

i Ly

1/ (3) B p3) U
- Q(S) L

— — m— o — - - - - - - - - e e e e e e — m — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —

I
With . [ Usf— = = It
! :
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Ev(l) EP(l) i }1(1)
. — QYi—e
T = = RT(Z)E
1/ (2) p2) B T L
= - g
U (3) — = . R®)
_ — Q) L

— — m— o — - - - - - - - - e e e e e e — m — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —

I
With . [ Usf— = = It
! :
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EV(1> Ep(l) § Ril)
_ — Q) i—e
T = = RT(Q)E
1/ (2) p2) B T L
I i <11
1/ (3) - B p(3) [
_ _ Q) L

— — m— o — - - - - - - - - e e e e e e — m — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —

I
With . [ Usf— = = It
! :
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= - R(1)

— QU)o L T

= - R2)E=
— Q2 e T L

B (3) e

— " Q) L
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= R(1)
P L
— Q(l) P T
= R2)E=
P2) L
— Q(Z) S T
= R(G)
Definition. Let MN(n) be P = L
the minimum depth of C(U). - Q
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= R(1)
P
— QU)o L T
= R2)E=
P2)
— Q2 e T L
= R(G)
Definition. Let MN(n) be P = L
the minimum depth of C(U). - Q
—— \——
Then MN(n) < 4% + MN(%) + 4F
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' I
= R
_P(l) ST L T
= R2)E=
_ P 0@ o T L
= R3)
Definition. Let MN(n) be_) - P3) L
the minimum depth of C(U). QB
— ——
Then MN@() < 4k L MN ( % ) Lok

And after Z iterations:

MN() < 2¢-4 + MN<£)
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' I
= R
_P(l) ST L T
= R2)E=
_ P 0@ o T L
= R3)
Definition. Let MN(n) be_) - P3) L
the minimum depth of C(U). QB
— ——
Then MN@() < 4k L MN ( % ) Lok

And after Z iterations:

MN() < 2¢-4 + MN<£)

Put 2 = ©(ogn) and k = O(1):
MN((n) < O(logn)
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Refuting the Moore—Nilsson conjecture: improved precomputation

Under the hood: a special structure for the relevant Cosine-Sine Decomposition
For the Moore—Nilsson circuits C(l7),

=

Ul Uz—o

Il
!
~
Il

— o — — — — — — — — — — — — — — o — o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e — e — — —

Il
Il
Il
N
~
Il

C.f. the general case from

the CS decomposition
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Our results

1. Moore—Nilsson unitaries have O(log n)-depth circuits

t Theorem. For any 1-qubit unitaries Uy, ..., U, , the unitary
Done - (E Bonus: i.n regime of ?D |
L T geometrically-local circuits:
CUy,....U,) = Us—o O(\/ﬁ) depth, O(n) ancillae
|
Done U~

‘ has an exact, ancilla-free circuit of depth O(logn).

2. Depth reductions for general “control-cascade circuits”

Example corollary. For all (21logn)-qubit unitaries Uy, ..., U, the unitary
C(Uy,...,U,) has an exact circuit of depth O(nlogn) using O(n*?) ancillae.
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Next steps
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Next steps

Beyond one qubit of control

1 Cosine-Sine
decomposition
: U i approach already
blocked at qutrit
Us i controls...
Us|
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Next steps

f | unitari
Beyond one qubit of control Cascades of general unitaries

1 Cosine-Sine |Us Unclear how to prove
B decomposition Us a precomputation
|Uh i approach already Us - identity here...
blocked at qutrit Ua|
Uz i controls...
Us|
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Next steps

f | unitari
Beyond one qubit of control Cascades of general unitaries

1 Cosine-Sine |Us Unclear how to prove
B decomposition Us a precomputation
|Uh i approach already Us - identity here...
blocked at qutrit Ua|
Uz i controls...
sl Quantum dynamic programming?

T(m,n) :f(T(m—l,n),T(m,n—l))

/@ ! T time
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Next steps

f | unitari
Beyond one qubit of control Cascades of general unitaries

1 Cosine-Sine |Us Unclear how to prove
B decomposition Us a precomputation
|Uh i approach already Us - identity here...
blocked at qutrit Ua|
Uz I controls...
sl Quantum dynamic programming?

T(m,n) :f(T(m—l,n),T(m,n—l))

Question for the audience:

! T time
What circuits would you like

to be parallelized?
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—¢
—¢
I I
I
y ® ®
o o o—
I I |

Thanks! Questions?
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