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Abstract

Closed meanders are classes of Jordan curves intersecting the x-axis n times,

whose enumeration is an important open problem. We present a counting tech-

nique based on the algebraic structure arising from a simple meander composi-

tion operator. This operad structure allows each meander to be decomposed into

a canonical tree form which in turn can be counted with familiar techniques. We

demonstrate the utility of this approach by counting a finitely-generated sub-

class of closed meanders,ultimately showing it to be equinumerous with “blobs

of odd order,” a previously unrelated combinatorial family. In pursuit of a full

enumeration of closed meanders, we show an extension of the composition oper-

ator yields a structure on meanders where a meander is indecomposable if and

only if it corresponds to a simple permutation. The set of these indecomposable

meanders is of independent interest.

Keywords: Meanders, Enumerative Combinatorics, Operads, Simple

Permutations

1. Introduction

Closed meanders have a number equivalent definitions (as arch systems, as

homeomorphism classes, see [1]); we define them here by their permutations.

Definition 1 (Meander). Fix a positive integer n and let m = (1 x2 . . . x2n)

denote a cyclic permutation of order 2n. Define the upper arches of m as the5
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(1 4 7 8 3 2 9 6 5 10) (1 5 6 9 2 3 7 8 4 10) 

i. ii.

Figure 1: The first cyclic permutation (i) is a meander while the second (ii) fails to satisfy

the ordering conditions on both the upper and lower arches.

set of pairs U = {{xi, xi+1} : i odd} and the lower arches of m as the set of

pairs L = {{xi, xi+1} : i even}.

Then m is a meander if for every two upper arches (resp. lower arches)

{a < a′}, {b < b′} with a < b, we have a′ < b or a′ > b′.

Graphically, upper (resp. lower) arch pairs {a, a′} are represented as semicir-10

cles in the plane above (resp. below) the x-axis with endpoints coincident to the

points (a, 0) and (a′, 0). The ordering conditions correspond to the requirement

that no two arches may intersect, as exemplified in Fig. 1.

In the foregoing we will use “meander” to refer to the meander’s cyclic

permutation (1 x2 . . . x2n), the formal sequence of integers [x1 = 1, x2, . . . , x2n],15

and the corresponding plane curve; we will denote the set of meanders of order n

as Mn. Counting Mn is a long-studied problem, appearing to have been initiated

in [TODO: date, cite], yet a closed-form enumeration—or even a generating

function—has evaded derivation. Many enumeration techniques, both algebraic

and asymptotic, have been employed in the literature, including mappings to20

the Temperley-Lieb algebra [2], Pillowcase covers [TODO: cite], and [TODO:

add third technique].

In this article we introduce another approach based on a natural composition

operator that allows meanders to be inserted into each other to produce mean-

ders of larger order. In this way, meanders may be rewritten as a composition of25

smaller meanders, represented by colored trees with certain algebraic properties

known as operads. As we shall see, operadic representations of meanders allow
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Figure 2: m ◦2 w for two meanders m,w. If w were inserted at an odd index, it would be

reflected about the x axis before insertion.

the development of various recurrence relations for subclasses meanders.

2. The Operad Meander

In this section we define the plain operad Meander. Meander has no30

operators of even arity and there is one (2n− 1)-ary operator for each meander

of order n. Composition of operators is defined directly in terms of meander

permutations.

Definition 2 (Meander Composition). Suppose m = [1,m2, . . . ,m2n], w =

[1, w2, . . . , w2k] are meanders and i is an integer with 1 < i ≤ 2n. Define the

sequences m′ = m′1, . . . ,m
′
2n and w′ = w′1, . . . , w

′
2k with entries

m′j =

mj if mj ≤ mi

mj + 2(k − 1) if mj > mi

and w′` = w` + mi − 2

for 1 ≤ j ≤ 2n and 1 ≤ ` ≤ 2k. Then the composition of w into m at i is the

meander with permutation

m ◦i w = [m′1, . . . ,m
′
i−1, w

′
2, . . . , w

′
2k,m

′
i+1, . . . ,m

′
2n].

Graphically, this corresponds to deleting the two leftmost arches in w, split-

ting the arches apart in m that meet at the ith intersection (as indexed along35

the meander curve), and fitting w into the newly created space in m while

preserving orientation (see Fig. 2).
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Figure 3: A graphical representation of the insertion operator.

We check a few properties.

Proposition 1. Composition is well-defined. That is, if m and w are meanders,

m ◦i w is a meander of the correct order.40

Proof. The adjustments m′ an w′ do not change the relative ordering of the

indices, so we need only consider potential violations between an arch from m

and an arch from w. But by construction all the inserted arches from w are

located either completely inside, or completely outside, each arch from m.

Suppose m and w have orders n and k respectively. Then m is a (2n−1)-ary45

operator and w is a (2k− 1)-ary operator. By the axiom of operad composition

m◦iw has arity 2n+2k−3. We must verify then that m◦iw has order n+k−1.

This is easy to check.

Proposition 2. Composition order does not matter. That is, for i 6= j, (m ◦i
w) ◦j v = (m ◦j v) ◦i w.50

Proof. Exercise left to reader.

Therefore ◦i can be extended to ◦ = (◦1, . . . , ◦n). It’s easy to check that

associativity holds and that the meander of order one, (1 2), is the identity for

◦. This completes the definition of the operad Meander. See Fig. 3 for an

example composition.55
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3. Basic facts about Meander

The power of an operadic approach to enumeration derives from the ability

to write meanders as compositions of smaller meanders. These decompositions

are not only equivalent but equal to the resulting meander, and as such can be

viewed as notational artifacts of the algebraic properties of operads. However,60

we will treat these meander expressions as first-class citizens, as their treelike

form admits easy recurrence relations. We give a few facts about these meander

representations now.

As shown in Fig. [make fig], some meanders have multiple representations

in Meander, while other meanders have one representation. It’s easy to char-65

acterize which meanders have this property:

Proposition 3. A meander of order n is decomposable in Meander if and

only if there exists a substring in its formal sequence which begins at index 2 or

greater, has odd length between 3 and 2n− 3 inclusive, and which is an integer

interval.70

Proof. A composition of meanders yields a permutation with the substring

w′2, . . . , w
′
2k, which has the necessary requirements. On the other hand, sup-

pose a meander [x1, . . . , xn] contains such a substring from xk to x`. then we

claim [x1, . . . , xk]

Proposition 4. Meander is not finitely generated.75

Proof. Proof by construction

Let P denote this latter set of indecomposable meanders. Every meander

is therefore equal to at least one composition of meanders in P . Our strategy

is to enumerate Mn by counting how many ways to compose indecomposable

meanders of lesser order to get meanders of order n.80

There are two main challenges for this strategy. First, while counting we

must make sure to “mod out” by equality so that we do not double-count dif-

ferent expressions for the same meander. Second, we must determine how many
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indecomposable meanders there are of order n. This paper contains a solution

to the first challenge, called leftmost decompositions, and explores one approach85

to solving the second.

4. Leftmost decompositions

Here we define a canonical way to write a decomposable meander as a com-

position of indecomposable meanders.

Definition 3 (Leftmost expressions). Given a decomposable meander m, a left-90

most expression is obtained in the following way. The meander m may be written

as m′ ◦i w for a number of triples (m′, i, w). Of these triples, select the smallest

i and among the w associated with that i, select the one of largest order, and

write m′ ◦iw. Now, repeat this step to decompose m′ and w. The sequence stops

when all meanders in the expression are indecomposable.95

Note that there is a single w of largest order because for a fixed index

meander composition is injective. This implies there is exactly one leftmost

expression for each decomposable meander. An example is shown in [fig].

If we knew how to count Pn, then Mn could be easily enumerated with well-

known tree enumeration methods. This problem remains open, but we can via100

brute-force methods determine a list of indecomposable meanders up to some

finite order n, and enumerate the subclass of meanders corresponding to the

suboperad generated by this finite set.

We now count the suboperad of Meander generated by the two (indecom-

posable) meanders of order two, (1 2 3 4) and (1 4 3 2).105

5. Meanders and Odd Blobs

For convenience set m1 = (1 2 3 4) and m2 = (1 4 3 2).

Theorem 1. Let S be the subset of meander expressions generated by m1,m2

defined as follows, treating each expression as a plane tree with each vertex

labeled by m1 or m2. For all vertices v, require:110
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Case 1: Case v = m1

The middle child of v is either null or m1 and the right child of v is null or m2

Case 2: v = m2

The middle child of v is either null or m2 and the right child of v is null or m1.

Then each S contains exactly one leftmost expression of each meander gen-115

erated by {m1,m2}.

Proof. WIP

Theorem 2.

Ms
n =

1 if n = 1

2H(n− 1) if n ≥ 2,

where H(n) = 1 for n = 0, 1 and for n ≥ 2, H(n) is given by the recurrence

H(n) = 2

n−2∑
i=0

n−i−2∑
j=1

H(i + 1)H(j)H(N − 2− i− j)

+

n−1∑
i=1

H(i)H(n− 1− i).

Proof.

6. Prime Meanders and Simple Permutations

The astute reader will notice the similarity between the requirements of120

permutations corresponding to indecomposable meanders and the definition of

simple permutations

Definition 4 (Simple Permutations). WIP
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