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Abstract

Loosely inspired by the ultra-parallel architectures of animal brains, ar-

tificial neural networks are models of computation which take real input

vectors and propagate them through networks of simple computational

units. In recent years many-layer (or deep) artificial neural networks have

achieved a high level of proficiency in solving a number of machine-learning

problems, notably computer vision tasks. However, building and training

these networks is still more art than science.

One major component of this art is the choice of what network architec-

ture (in particular, what depth) to pick for training. Importantly, in this

choice we must be careful to avoid underfitting, which in turn requires an

understanding of the relationship between a network architecture and its

expressivity; that is, the set of functions it is capable of representing. In

this thesis we survey the fields’ theoretical understanding of this relation-

ship and extend some of these results with a view towards understanding

depth. Along the way we will encounter larger questions about function

composition and complexity measures that are of interest to a general

audience.
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Introduction

Loosely inspired by the ultra-parallel architectures of animal brains, artificial neural

networks (ANNs) are models of computation which take input vectors and propagate

them through layers of affine transformations and simple nonlinearities. This thesis

is concerned with understanding the relationship between the structure of a neural

network and the functions it can implement. Motivations to study this relationship

come from ANNs’ connection to long-established research topics such as boolean

circuits and approximation theory, but also (and perhaps more urgently) to recent

developments in machine learning. In this chapter we discuss these motivations in

detail and prepare the stage for the mathematics to follow.

What is an ANN?

An ANN consists of a network of computational units whose parameters are selected

to determine a specific function. It will be useful for us to differentiate between

the network architecture, an instantiation of the network where parameters have

been selected, and the implemented function determined by this instantiation. The

definitions we present here are based on those from early theoretical literature on the

subject e.g., [17], [18], but have been simplified slightly to reflect practice at the time

of this writing.

Definition 1. An ANN architecture A consists of

i. A directed acyclic graph (V,E), where we call a vertex a network input if it has

no predecessors and a network output if it has no successors,

ii. For each non-input vertex, or unit, v ∈ V , an ordering of its predecessors

(w1, . . . , wn),

iii. An ordering of input vertices S = (s1, s2, . . . , sr) and an ordering of output

vertices K = (k1, k2, . . . , kt),

iv. An assignment to each unit v an activation function σv : R→ R.
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In keeping with boolean circuit literature (e.g., [30]), we refer to the number of

units of A as the size of A. Architectures are also described in terms of depth—the

length of the longest path from an input vertex to an output vertex—and width,

a somewhat subtle measurement that corresponds roughly to the minimal memory

required to compute the output of the neural network. (We defer the formal definition

till Chapter 1).

Definition 2. An (instantiated) artificial neural network N consists of a neural

architecture A and an assignment to each unit v in A a weight vector wv ∈ Ri(v)

(where i(v) is the indegree of v) and a bias bv ∈ R. Taken together over all units,

these weights and biases are called the programmable parameters of A.

Definition 3. Given a network N instantiated on an architecture with r inputs and

m outputs, we say the network implements the function

N : Rr → Rm

x 7→ (yk1 , yk2 , . . . , ykm),

where for all units v,

yv =

{
xi if v = si, the ith input node,

σv
(
wv · (yu1 , yu2 , . . . , yun) + bv

)
otherwise,

where {ui}ni=1 are v’s predecessors and ‘ · ’ is the dot product.

In practice activation functions are typically simple nonlinearities like the rectifier

max{0, x} (giving rise to rectified linear units, or ReLUs) or the sigmoid 1/(1 + e−x).

Neural network architectures also typically contain only a small number of different

activation functions, often two or three. For example, most networks discussed here

have the same nonlinear σ assigned to each non-output, or hidden unit, and then

have the identity activation function assigned to the output units. For overviews of

neural networks as used in practice, we refer the reader to [10] and [11].

This set of definitions describes the majority of popular network architectures, but

it is worth noting that there are other paradigms not captured by it. In particular, [17]

and others consider arbitrary n-variable polynomials within each σv, rather than affine

transformations; Poon & Domingos [25] and others have investigates networks formed

by units which compute sums or products of their inputs; and we will see in Chapter

3 a result that also holds for units which compute the max or min of their inputs.
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Training Neural Networks

As computational networks ANNs can be considered an extension of traditional

boolean circuits, and some of our investigations here can be seen as analogues of

traditional questions asked about boolean circuits. However there is currently a far

greater motivation for this work, as in comparison to boolean circuits ANNs possess

the particular advantage of trainability: the parameters of a network architecture may

be tuned to minimize the distance between the implemented function and a target

function we desire to learn. Let us discuss this in greater formality.

Definition 4. Let K be a measurable subset of Rr and let µ be a probability mea-

sure defined on K. Suppose also that we have f, f ′ : K → Rm with coordinates

(f1, . . . , fm), (f ′1, . . . , f
′
m) respectively. Then we say f ′ (ε, Lp, µ)-approximates f if the

quantity

‖f − f ′‖Lp(µ) =


( m∑
i=1

∫
|fi − f ′i |p dµ

)1/p

if 1 ≤ p <∞

max
1≤i≤m

sup
x∈K
|fi(x)− f ′i(x)| if p =∞

is strictly less than ε. In the case that µ is the uniform distribution over a known K,

we will omit µ from the notation.

The general setting of neural network training is as follows. Provided samples

drawn from f : Rr → Rm according to some probability distribution µ, we first

select an architecture A. Next, we search for instantiation N thereof which (ε, Lp, µ)-

approximates f . The search for such an instantiation happens over the following

search space (or similar).

Definition 5 (Neural Function Class). Given a neural network architecture A, select

a bound B ∈ (0,∞]. Then we say the ANN function class F(A, B) is the set of

neural network functions derived by all possible assignments of weights wi and biases

bi to each unit vi such that ‖wi‖L∞ < B and |bi| < B.

Note that when B and p are clear or we are discussing generally, we will denote a

neural function class simply as F(A). We will also informally refer to the set F(A) as

the expressivity of A. For instance if F(A) is larger than F(B) by some measurement

(e.g., it is a superset, or it has greater VC dimension—to be discussed in Chapter 2),

we might say the former architecture is more expressive.

For a given neural network N , we may concatenate all the vectors representing

weights and biases into a single vector W, say of length t. Doing this for all possible
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assignments of weights and biases to A that meet the requirements in Definition

5, we may write the resulting collection {W} as a subset S of Rt. We therefore

have a map F : S → F(A) which parametrizes the neural function class. Hence

for W ∈ S, the task of neural network training takes the form of minimizing the

loss function L(W) = ‖F (W)− f‖Lp(µ). As long as the activation functions in A are

differentiable, so is F (and by extension L) and this optimization problem is amenable

to iterative optimization techniques such as stochastic gradient descent. Again, we

refer the interested reader to [10] and [11] for more thorough treatments of neural

network training.

Thanks to their trainability, ANNs find great success in the present day as machine

learning algorithms, comfortably sitting in first place for computer vision tasks (e.g.,

[28]) and finding use in data compression (e.g., [19]) and medical diagnosis [1]. That

being said, the design of ANNs and their associated training algorithms remains

more of an art than a science. For any nontrivial ANN architecture A, the loss

surface defined by L(W) is highly non-convex and as a result A may fail to learn

an approximation to the target function f within a reasonable number of samples.

This results in bad predictions on unseen data, characterized by a high generalization

error. Assuming enough data is available for learning to be possible, this failure is

due to one of two problems:

Problem 1. F(A) does not contain an (ε, Lp)-approximation to f (a

problem known generally as underfitting).

Problem 2. F(A) does contain an (ε, Lp)-approximation to f , but the

probability that the learning algorithm finds this approximation in a rea-

sonable amount of time is too low. Here the optimization algorithm may

repeatedly get stuck in local minima, or ‘bad wells’ (and thus must try

optimizing from a different starting point), or overfit by introducing noise

into certain programmable parameters.

Observe that the behavior of the training algorithm can only ever cause problem

2. On the other hand, the relationship between F(A) and the structure of A is

connected to both: if a network is too small it may not contain an appropriate

approximation of f ; whereas if it is too large or yields a particularly unfavorable loss

surface, convergence to an approximation of f with high probability is impossible.

Therefore understanding the map A 7→ F(A) is of great practical interest.

While it is often unclear which the problems above plague a given ANN, we note

that the task of understanding how the structure of A affects L(W) appears to be
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slightly out of reach at the time of this writing. Indeed, to address the architecture’s

role in Problem 2, researchers have turned to approximations by ensemble methods

from statistical physics as well as direct experimentation to say anything of use (e.g.,

[5]) Thus while inadequate network expressivity is the simpler of the two ways network

architecture can obstruct the learning process, we will focus on it in the present work,

appreciating that results are still hard-won.

Underfitting in the context of deep learning

Suppose we wish to select a network architecture to achieve an approximation of a

target function f and additionally we have the following information:

• A set of activation functions we intend to use in our network (known as our

gate set or basis),

• Properties of f such as its smoothness, its Lipschitz coefficient, or number of

extrema.

We would like to find ‘rules of thumb’ which take this information and output rec-

ommendations for the structure (bounds on size, depth, width, or similar properties)

of A so that the membership in F(A) of an approximation to f is guaranteed. Let

us call these sorts of results underfitting avoidance strategies, or UAS s.

A starting point for a UAS might be inferred from the following theorem, proved

for many different sorts of activation functions and network types (we will see two

such proofs in Chapter 1) around the year 1990:

Theorem (Universal Approximation Theorem). Let K be a compact subset of Rr.

Then for any continuous function f : K → R and any ε > 0, there exists a depth-two

neural network which (ε, L∞)-approximates f .

This result suggests one way to avoid underfitting: start by trying to train a small

neural network of depth two, and if that doesn’t work, add some units to the hidden

layer; repeat until success is achieved. In Chapter 2 we’ll even see bounds on how

wide one must go to achieve this success for certain restricted classes of functions. In

summary, one need not consider networks of depth three or greater.

The picture today looks quite different, however: thanks to the growth of ‘Big

Data’, sophisticated training algorithms for many-layer networks, and better GPUs

for putting it all together, many of the successful ANNs used in practice today are of

far greater depth than pure reliance on the universal approximation theorem would
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Year Name Error Depth

2011 — 25.8% 2

2012 AlexNet 16.4% 8

2013 — 11.7% 8

2014 GoogleNet 6.7% 22

2015 ResNet 3.6% 152

Table 1: A table of recent depths for successful image classification networks in the ILSVRC compe-
titions [12]. Error here is the “Top 5 Error,” meaning the percentage of images in the test set whose
correct classification was not in the top five most likely candidates proposed by the network.

engender. (Indeed, the buzzword “deep learning” refers specifically to neural networks

of depth at least three.)

For example, consider Table 1, a list of depths of successful networks entered

in the ImageNet Large Scale Visual Recognition Competition in recent years. The

relationship between the usefulness of a neural network and its structure is clearly

more subtle than the Universal Approximation Theorem. But does this turn towards

deep learning have anything to do with the desire to avoid underfitting?

Perhaps depth doesn’t really improve expressivity, but rather makes the curvature

of the loss surface more amenable to training. This would mean that our search for

UASs isn’t very relevant to the choice of deep learning architecture because they

merely give lower bounds. But there is evidence this isn’t the case, and that part

of the reason to turn towards deeper networks may be to gain in expressivity. In

particular, as we’ll see in Chapter 3, there are certain functions that benefit greatly

from depth in the following sense. Any ε-approximation to f of depth less than

d requires exponentially-many units (in some property of the ANN such as input

dimension, depth, or similar), while there exist certain networks of depth greater

than d requiring only polynomially-many units to ε-approximate f .

Thus we have at least some cases in which expressivity is provably improved by

increasing depth. But there’s another reason our rules of thumb might be irrele-

vant: maybe deep networks, with their millions of parameters, brute-force their way

through Problem 1. That is, perhaps deep networks are so deep that they can always

guarantee f is in the ε-neighborhood of F(A). It is hard to know whether this is true

in practice, but even if it is there is still reason to seek our rules of thumb.

As an illustration, Zhang et al. [36] found that some networks which are very

successful at image classification can also happily memorize random noise, implying
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that the networks are capable of drastic overfitting. The reason they don’t do this for

image classification is an interesting mystery in its own right, but this result serves

to suggest that there may be other learning problems in which depth is not a catch-

all solution. Thus even in the context of deep learning, it’s useful to have UASs

because they stand as approximate lower bounds for the size of the network to use,

and thereby may also guard against overfitting.

This thesis

We’ve just seen that the development of UASs, and in particular those which recognize

the importance of depth, is a worthy research direction even in the context of deep

ANNs. Yet we must be cautious about what goals we set: in order to generate such

recommendations, we must first understand with greater precision the relationship

between F(A) and the structure of A, a task that sits at the very edge of the our

mathematical abilities.

Moreover, there are computational results that set limits on the power of the

UASs we might eventually develop. In particular, in [14] (Appendix B) Judd proves

the NP-completeness of the following decision problem:

Given an ANN architecture A with activation functions that are nonlinear

and bounded, a sample of inputs S ⊆ {0, 1}r, and a function f : {0, 1}R →
{0, 1}m, is there an N ∈ F(A,∞) which (0.1, L∞)-approximates any g :

{0, 1}r → {0, 1}m with g|S = f |S?

Similarly, [4] prove that determining exact membership (the answer to the question,

“Is f in F(A)?”) is NP-complete for threshold networks (that is, using activation

functions σ(x) = sgn(x)/2 + 1/2) that implement functions on the boolean cube.

Hence a ‘Holy Grail’ UAS which could tell us with certainty the approximability of f

by F(A) is out of reach, or at least it seems any such algorithm would be little better

than brute force guessing-and-checking.

However, these results do not imply that useful bounds cannot be gleaned for more

restricted classes of functions, or that approximate, probabilistic UASs are impossible.

And not all hope is lost; we’ll see at that end that if we already know something about

the structure of the function we’re attempting to learn, then we can use this knowledge

as a “structural prior” to gain information about required network size.

With this in mind, we set ourselves to the task of surveying the present under-

standing of expressivity. In particular, we will explore the following questions:
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• What classes C of networks architectures are universal approximators of contin-

uous functions over compact subspaces of Rr? That is, under what conditions

is the closure of a collection C of ANN architectures equal to C[K] with K a

compact subset of Rr?

• If some information is known about f , what upper and lower bounds can we

put on the size of A such that F(A) contains an ε-approximation to f?

• Are there function classes which obtain a substantial improvement in represen-

tation efficiency (minimum size of network) from depth? From width?

• Can information about a decomposition of f lead to an efficient ANN approxi-

mation thereof?

• And how much do all of these depend on the particular activation function being

used?

We opt to give proofs for a number of results in their full because the techniques

used therein are not only interesting in their own right, but also demonstrate the

present limitations of our mathematical ability to understand these complex systems.

We will also present a number of extensions of these results inspired by the questions

above, and with a view towards gaining insight into the relationship between depth

and expressivity.

Organization of this thesis

Chapter 1: Universality. We give two proofs of the universal approximation theo-

rem that highlight different proof techniques. We then extend the result to networks

with fixed width rather than depth.

Chapter 2: Approximation Bounds. We present a result of Barron that gives

explicit network size upper bounds for a certain restricted class of functions, including

polynomials. We then present lower bounds for network size inspired in one case by

an early Shannon result, and in the other case based on VC-dimension bounds.

Chapter 3: Exponential separations. We examine function classes that admit

efficient deep representations yet cannot be efficiently approximated by shallow net-

works. We also examine the role a particular choice of activation function plays.

Conclusion. Here we take a conceptual overview of the results discussed, concluding

with a list of open problems.
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Chapter 1

Universality Results

There are a number of versions of the Universal Approximation Theorem (UAT) in the

literature (see [31] for a survey); we will see two proofs which use different techniques

at different levels of abstraction.

In this chapter we consider neural networks with r inputs and one output, where

the hidden units all use identical activation functions and the output unit uses the

identity activation function. The universality theorems we show here don’t require

a bias term on the output unit, so we will leave it out of our notation. Thus the

depth-two ANNs of this kind have the explicit form

N∑
i=1

aiσ(wi · x + bi)

for some N , weights {wi} and (a1, . . . , aN), and biases {bi}. Define

Nr·×2 =
∞⋃
N=1

{
N∑
i=1

aiσ(wi · x + bi)

∣∣∣∣∣ ai, bi ∈ R,wi ∈ Rr

}
.

As we will see shortly, the relative simplicity of shallow networks’ functions allow us

to use standard technique from functional analysis to analyze them.

1.1 Cybenko’s Universality Theorem

Cybenko [6] proves the UAT for networks with activation functions from the following

class:

Definition 6 (Sigmoidal functions). A continuous function σ : R → R is sigmoidal

if

lim
x→−∞

σ(x) = 0 and lim
x→∞

σ(x) = 1.
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He proves the UAT for target functions Ir → R where I = [0, 1]; generalization to

arbitrary compact subsets of Rr is straightforward. The basic structure of Cybenko’s

proof is this: first we prove the UAT for a more general but somewhat opaque class of

activation functions, then secondly we show that sigmoidal functions belong to this

class. Here M(X) denotes the set of all finite, signed regular Borel measures on a

space X. For notational convenience we will also define σw,b(x) := σ(w · x + b).

Definition 7 (Discriminatory Function). A function σ : R→ R is discriminatory if

for all µ ∈M(In),


∫
In
σw,b dµ = 0

for all w ∈ Rn and b ∈ R

 =⇒ µ = 0.

(the trivial measure).

For a descriminatory activation function σ, Cybenko proves the density of Nr·×2

in C(R) by showing any functional annihilated on its closure Nr·×2
is annihilated

everywhere.

Theorem 1.1 (G. Cybenko, 1989). Let σ be a continuous discriminatory function.

Then for discriminatory activation functions, Nr·×2
is dense in C[In].

Proof. Clearly Nr·×2
is a linear subspace of C[In]. Let Nr·×2

be the closure of Nr·×2
.

We claim that any bounded linear functional that is zero on Nr·×2
must be zero on all

of C[In]; this proves the result by the Hahn-Banach theorem (see e.g., [27], Theorem

5.19.)

To that end, suppose L is a functional on C[In] such that L(Nr·×2
) = {0}. By the

Riesz Representation Theorem there is some µ ∈M(In) such that for all h ∈ C[In],

L(h) =

∫
In
h dµ.

In particular, because L(Nr·×2
) = {0} we have

L(σw,b) =

∫
In
σw,b dµ = 0

for all w and b. Because σ is discriminatory µ = 0, and so L = 0.

This proof is curiously simple. We appear to gain a lot of power from the definition

of “discriminatory” so just how realistic is this condition? As it turns out, the answer

is “quite realistic!” Here’s where the rest of the difficulty of this universality result is

hidden:
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Lemma 1.2. Bounded, measurable sigmoidal functions are discriminatory.

Proof. Suppose σ is a bounded measurable sigmoidal function and µ is a measure on

In such that for all w ∈ Rn and b ∈ R,∫
In
σw,b dµ = 0.

We will show µ is the trivial measure by first showing µ(H) = 0 for every halfspace

in In, and then showing that this condition implies µ is identically 0.

To begin, fix ϕ and define σλ,w,b(x) = σ(λ(w · x + b) + ϕ). Then for all w, b we

have ∫
In
σλ,w,b dµ =

∫
In
σ
(
(λw) · x + (λb+ ϕ)

)
dµ(x) = 0. (1.1)

Observe that for any x,w, b we have the pointwise (along x) bounded convergence

lim
λ→+∞

σλ,w,b(x) =


1 for w · x + b > 0

0 for w · x + b < 0

σ(ϕ) for w · x + b = 0

 =: γw,b(x).

Then by the Lesbegue Bounded Convergence Theorem, we have for all ϕ, b, and w,∫
In
γw,b dµ = lim

λ→+∞

∫
In
σλ,w,b(x) dµ(x) (1.2)

= 0 by (1.1).

Let Πw,b be the hyperplane defined by {x : w · x + b = 0} = γ−1(σ(ϕ)) and let

Hw,b be the open half-space defined by {x : w · x + b > 0} = γ−1(1). Then by (1.2)

we also have for all w and b∫
In
γw,b dµ = σ(ϕ)µ(Πw,b) + µ(Hw,b) = 0.

So far ϕ has been arbitrary, so the above implies:

lim
ϕ→−∞

σ(ϕ)µ(Πw,b) + µ(Hw,b) = 0

=⇒ µ(Hw,b) = 0 by definition of σ.

But this is true for all w, b, so indeed µ(H) = 0 for every half-space H. It remains to

show a finite signed measure with this property is identically zero. This is a general

fact which we leave for Lemma 1.3.
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A word about the strategy behind the definition of σλ,w,b(x): multiplying the input

to σ by λ and then taking it to ∞ has the effect of ‘squeezing’ σ all the way to look

like a Heaviside step function with singular value σ(ϕ). Because σ is continuous, the

intermediate value theorem says that we can set σ(ϕ) to any value between 0 and 1

we want, depending on our choice of ϕ. In particular, sending ϕ→ −∞ simplifies our

integral even further. Seen this way, Lemma 1.2 proves the expressivity of sigmoidal

functions by reducing them to threshold functions.

Lemma 1.3. Suppose µ is a finite signed measure on In. Then if µ(H) = 0 for all

half-spaces H in In, µ = 0.

Proof. Fix w ∈ In. For a bounded measurable function h : R→ R, define the linear

functional F (h) by

F (h) =

∫
In
h(w · x) dµ(x).

Observe that F is a bounded functional on L∞(R) because µ is finite signed. Now

set hb = 1[b,∞), so hb(w · x) ranges over all halfspaces as b,w change. Then

F (hb) =

∫
In
hb(w · x) dµ = µ

(
h−1
b (1)

)
= 0

by hypothesis. The same is true if hb = 1(b,∞). By linearity, this means F (h) = 0 for

the indicator of any interval and hence by Fubini’s Theorem F (h) = 0 for any simple

function. Simple functions are dense in L∞(R), so F = 0.

In particular, using the bounded measurable functions s(x) = sin(m · x) and

c(x) = cos(m · x), we have

F (s+ ic) =

∫
In

cos(m · x) + i sin(m · x) dµ(x) =

∫
In
eim·x dµ(x) = 0

for all m. Hence the Fourier transform of µ is 0 and so µ is itself 0, as desired.

Techniques used here are highly nonconstructive, so Cybenko’s proof does not

easily lend itself to exploring approximation bounds or other extensions. The next

proof we’ll see is much more explicit, but loses the elegance afforded by the Hahn-

Banach and Riesz Representation theorems.

Before we move on, note that we may easily generalize this theorem to networks

built with ReLUs:

Corollary 1.3.1. Nr·×2
with ReLUs in the hidden layer is also a universally approx-

imating class.
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Proof. Let σ(x) = max{0, x} and observe that δ(x) = σ(x) − σ(x − 1) is sigmoidal.

Apply Cybenko’s UAT for networks with activation function δ. Thus for every f and

any measure µ we have an ε-approximation f̄ to f by a network of the following form:

f̄ =
N∑
i=1

aiδ(wi · x + bi)

for some N , weights {wi} and (a1, . . . , aN), and biases {bi}. Substituting for δ, we

have

f̄ =
N∑
i=1

ai
(
σ(wi · x + bi)− σ(wi · x + bi − 1)

)
=

N∑
i=1

aiσ(wi · x + bi) +
N∑
i=1

(−ai)σ
(
wi · x + (bi − 1)

)
.

This last line defines a new neural network with ReLUs in the hidden layer that

exactly implements f̄ , as desired.

1.2 Funahashi’s Universality Theorem

Funahashi’s work [9] is based on a result of Irie-Miyake [13] which proves the repre-

sentability of continuous functions by a network with a continuum of hidden nodes.

Funahashi shows the approximability of this continuum-network by networks of finite

size, achieving an approximate representation that is significantly more constructive

than Cybenko’s. Their combined work proceeds as follows: we begin with a Fourier

integral representation of the target function, replace the exponential with a Fourier

representation of a function derived from sigmoidal functions, and then take the mul-

tivariate Riemann sum to produce a convergent series of approximations to the target

function.

Funahashi also works with a different class of activation functions, though this

class does contain certain sigmoidal functions including the traditional sigmoid.

Theorem 1.4 (Funahashi, 1989). Let K be a compact subset of Rr on which a contin-

uous real function f is defined and suppose σ : R→ R is an bounded, increasing, and

non-constant function. Then there exists a two layer ANN using activation function

σ which (ε, L∞)-approximates f .

Proof. Note that any continuous f can be extended to a continuous function f ′ on

Rr with compact support, and that the set of C∞ functions with compact support
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is dense in the set of continuous functions on Rr with compact support. Hence we

assume without loss of generality that f is C∞ on Rr with compact support. By

the Paley-Weiner theorem, the Fourier transform F of f is real analytic and for any

integer N, there is a constant CN such that

|F (ω)| ≤ CN(1 + |ω|)−N .

Define as our first approximation of f the function

fA =
1

(2π)r

∫
[−A,A]r

F (ω)eiω·x dω

and note that the modulus of the error is bounded as

|fA(x)− f(x)| ≤ 1

(2π)r

∫
Rr\[−A,A]r

|F (ω)| dω,

which is independent of x and goes to zero as A→∞ by (1.2). Hence f is uniformly

approximated by fA as as A→∞. Let ε > 0 be given and fix A such that ‖f−fA‖∞ <

ε/2.

Now let ψ be a function in L1(R) with Fourier transform Ψ such that Ψ(1) 6= 0.

Define g as follows and observe the equality:

g(x) =

∫ ∞
−∞

ψ(x ·w − ω0)eiω0 dω0 =

∫ ∞
−∞

ψ(ω)ei(ω·x−ω) dω

= ei(ω·x)

∫ ∞
−∞

ψ(ω)e−iω dω

= Ψ(1)ei(ω·x).

We now aim to replace the exponential in fA with an approximation of g(x)/Ψ(1).

Define

gB(x) =

∫ B

−B
ψ(x ·w − ω0)eiω0 dω0

= eix·w
∫ x·w+B

x·w−B
ψ(t)eit dt

and observe that

|gB(x)− g(x)| ≤
∫ x·w−B

−∞
|ψ(t)| dt+

∫ ∞
x·w+B

|ψ(t)| dt.
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This bound goes to zero as B →∞, so gB converges uniformly to g as B →∞. Fix

B such that ‖g − gB‖ ≤ εΨ(1)/2. Now define

fA,B =
1

Ψ(1)(2π)r

∫
[−A,A]r

F (ω)gA(x) dω

=
1

Ψ(1)(2π)r

∫
[−A,A]r

∫ B

−B
F (ω)eiω0ψ(x ·w − ω0) dω0 dω

and observe that for all x we have |fA,B(x) − fA(x)| ≤ ε/2. Hence by the triangle

inequality, ‖f − fA,B‖∞ < ε for appropriate choices of A and B.

Now replace the integral in fA,B with a Riemann sum approximation. The func-

tion being integrated is continuous over a compact set and is thus uniformly contin-

uous (e.g., [26] Thm. 4.19). Hence with sufficiently small intervals, a Riemann sum

approximation converges uniformly to fA,B. We have therefore shown that for any

continuous f : K → R, there exist {ai}, {wi}, {bi}, n such that∥∥∥∥∥f(x)−
n∑
i=1

aiψ(wi · x + bi)

∥∥∥∥∥
∞

≤ ε.

Finally, by Lemma 1.5 below, we may substitute each ψ for a linear combination of

σs, as desired.

Lemma 1.5. Let σ be an bounded, increasing, and nonconstant function. Then for

all α > 0 there exists a δ > 0 such that

ψ(x) = σ(x/δ + α)− σ(x/δ − α)

is in L1(R) and Ψ(1) 6= 0.

Proof. σ is bounded so there is an M which bounds |ψ|. By definition ψ is positive,

so for all L > M,α, δ > 0,∫ L

−L
|ψ| dx =

∫ L

−L
ψ

=

∫ δ(L+α)

δ(−L+α)

σ(x) dx−
∫ δ(L−α)

δ(−L−α)

σ(x) dx

=

∫ δ(L+α)

δ(L−α)

σ(x) dx−
∫ δ(−L+α)

δ(−L−α)

σ(x) dx ≤ 4αM

δ
.

And, taking the limit, we see ψ ∈ L1(R).
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Now suppose there does not exist a δ > 0 for which Ψ(1) 6= 0. Then for all δ

0 =

∫ ∞
−∞

(σ(x/δ − α)− σ(x/δ + α))e−ix dx

=

∫ ∞
−∞

(σ(x− α)− σ(x+ α))e−ixδ dx

=

∫ ∞
−∞

(σ(x− α)− σ(x+ α))eixδ dx.

The fact that ψ ∈ L1(R) implies Ψ is continuous, so by the above it must also be

identically 0. Hence σ(x + α) − σ(x − α) = 0 for all x, α. But this contradicts the

given that σ is not constant.

1.3 Linear-width Universality

Observe how specific the techniques used above are to the depth-two regime. Analyz-

ing function composition is very difficult, and while depth-two ANNs do have some

function composition in their expressions (i.e., a linear combination of nonlinear map-

pings of affine transformations), we were able to cope with them because these few

compositions have special properties. In Cybenko’s case, sigmoidal functions could

be squeezed into indicators on arbitrary halfspaces, while in Funahashi’s case we

matched the affine transformation inside the activation function with the exponential

in the Fourier transform of f . It is unclear how these techniques might generalize to

shed light on deeper networks. The difficulty of analyzing deep networks is certainly

a recurring theme in this thesis, though we now present a rare opportunity to say

something about the approximation capabilities of deep networks.

In particular we may ask a dual question address above: if we allow unrestricted

depth, what is the minimum width required of a network class to be a universal

approximator? The answer is a width asymptotically equal to the input dimension r,

it it comes fairly quickly as an extension of the depth-two UAT.

To prove this result we must first define width—a task which is surprisingly tedious

because naive attempts at a definition lack monotonicity. That is, the property that

N ⊆ W =⇒ w(N ) ≤ w(W), where ⊆ is defined as follows.

Definition 8 (Subnetwork). Suppose architecture A has graph (V,E) with input

vertices S and output units K and architecture B has graph (V ′, E ′) with input

vertices S ′ and output units K ′. If V ′ ⊆ V,E ′ ⊆ E, S ′ ⊆ S, and K ′ ⊆ K, we say B is

a subnetwork of A and write B ⊆ A.
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A definition of width from boolean circuit theory—in particular from Pippenger

[22]—is our starting point.

Definition (Width′). Let the level of vertex v be the maximum length of a path

from a source node to v. Let the thickness of a level ` be the number of vertices at

levels not exceeding ` which share an edge with a vertex in a level exceeding `. Then

the width′ of the network is the maximum thickness over all levels in the graph.

However, this definition fails to accurately capture our intuition of resource use.

Consider the network

The width′ of N is four. Yet by delaying the computation of the bottom two black

vertices till the second “layer” as suggested by the diagram, we can get away with

holding at most three values in memory at any particular time. Motivated by this

example, we present the definition of width that we will use here.

Definition 9 (Width). We say an ordered partition P = (`0 < `1 < . . . < `m) of

V (N ) is a level partition if, viewing N as a poset,

1. S(N ) = `0 and K(N ) = `m,

2. For all ` ∈ P , for all v1, v2 ∈ `, v1 6≤ v2 and v2 6≤ v1,

3. For all i < j, for all v ∈ `i, v′ ∈ `j, v 6≥ v′.

We say the P-width of N is the maximum thickness (in the Pippenger sense) over all

` ∈ P , and define the width of N to be the minimum P-width over all possible level

partitions P of N .

Our result about small-width universal classes follows directly from the depth-two

universality theorem and the following method for “massaging” wide networks into

deep and narrow ones. The construction is given for networks of with one output

unit, though it may be easily generalized. We note also that a similar construction

for boolean circuits is given in [35].
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Theorem 1.6 (Width Reduction). Suppose a network N : Rr → R has depth d and

admits a level partition with levels {`i}di=1. Then, if there exists another network that

computes the same function with width at at most r+d, depth at most d+
∏d

i=1 |`i|, and

uses activation functions from the original network as well as the identity function.

Proof. Let us call a network a tree network when the subgraph induced by the non-

source nodes is a tree. Observe than we may convert any network into a tree network

in the following way. Moving backwards through the levels, for each vertex v, replace v

with a number of copies equal to its outdegree and then attach each of these duplicates

to a distinct one of its descendents. LetW be this new network and let T be the tree

induced by non-source nodes W with the sink node s of W as its root.

We now produce a network U based on W . First we define a subnetwork G of U
based on the T . Suppose fs(x) = σ(w·x+b) with w = (w1, . . . , wk). Then recursively

define G as

G = ,

where the black node has activation function σ and bias b, the white nodes have

identity activation functions, and weight vectors are defined the values assigned to

incoming edges. G(ci) corresponds to the subgraph assigned to the ith tree-child of

s, defined as follows

G(v) =



if v is an interior node in T

if v is a leaf,

where again ci refers to the ith tree-child of v and weights are marked on edges.

Now that G is defined, we attach an ‘input bus’ to the exposed leaves of T as
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follows:

U = ,

In this diagram, the leftmost column of white nodes are the source nodes from W ,

horizontal edges bear weight one, and the edges going to each leaf from T are assigned

the weights they received in W .

Observe that U has depth at most

# leaves in T + # nodes in longest path in T ≤
d∏
i=1

|`i|+ d

and width

# nodes in input bus + # nodes in longest path in T = r + d.

Corollary 1.6.1. Width r+2 ANNs using sigmoidal and identity activation functions

are universal approximators.

Corollary 1.6.2. Width r + 3 ReLU ANNs are universal approximators.

Proof. We can simulate identity units with ReLUs by replacing the unit 1 · (w · x)

with σ(w · x)− σ(−w · x). This increases the width of the top rail in G by one.

Recall that in practice, locating a neural network that implements a (ε, L∞)-

approximation of a target function involves a search in both the size of the network

and the space of programmable parameters. However, the universality results just

presented make no mention of bounds on any these quantities for a given function.

This suggests an explanation for why universality results are a bad starting points

for an underfitting avoidance strategy: the most efficient representations of functions

may be spread out across different universality classes so far discovered. In the next

section we will pursue some bounds which do tell us what function are efficiently

approximated by depth-two networks, as well as explore some extensions to deeper

regimes.
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Chapter 2

Approximation Bounds

Given a continuous target function, how do network size requirements scale with

approximation error or input dimension?

2.1 Upper Bounds: a result of Barron

A general bound does not explicitly appear in the literature to the best of the author’s

knowledge, but for certain restricted classes of functions we are able to prove facts

about approximation rates. In particular, we present a classic result from Barron [3]

which shows that functions whose Fourier distributions are concentrated toward zero

require only linear growth in the number of nodes of a depth-two approximating

network.

Formally, for a bounded set B and a constant C > 0, Barron defines the function

class of ΓB,C as follows. Suppose f admits a Fourier representation

f(x) = f(0) +

∫
(eiω·x − 1)F̃ (dω) (2.1)

on B, where F̃ is the Fourier distribution of f (see e.g., [27] for an overview). F̃ is

complex-valued, so we may write F̃ (ω) = eiθ(ω)F (dω), where F is the modulus of F̃

and θ(ω) denotes the phase of F̃ at ω. Define

Cf,B =

∫
|ω|BF (dω),

where |ω|B = supx∈B |x · ω|. Then let ΓB,C to be those f admitting representations

(2.1) with Cf,B ≤ C.

Theorem 2.1 (Barron 1993). For every f ∈ ΓB,C , every probability measure µ and

every n ≥ 1, there exists a linear combination of sigmoidal functions of the form

fn = f(0) +
n∑
i=1

aiσ(wi · xi + bi)
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such that ∫
B

(
f(x)− fn(x)

)2
dµ(x) ≤ 4C2

n
.

Moreover the coefficients ai may be restricted to satisfy
∑N

i=1 |ai| ≤ 2C.

Note that Barron allows a bias term on the output node (in particular, this bias

is f0). Barron’s proof is motivated by the following lemma, credited to Bernhard

Maurey in [23].

Lemma 2.2. Suppose G is a set bounded by the ball of radius b in a Hilbert space

and let f̄ ∈ Conv(G). Then for all n ≥ 1, every ε > 0 there exists a function fn in

the convex hull of n points in G with

‖f̄ − fn‖ ≤
b2 − ‖f̄‖2

n
+ ε.

Proof. Given n ≥ 1 and fixing a δ > 0, let f ∗ ∈ Conv(G) with ‖f̄ − f ∗‖ ≤ δ/n.

By definition f ∗ =
∑m

k=1 γkg
∗
k with g∗k ∈ G, γk ≥ 0,

∑m
k=1 γk = 1 for some m. Let

g, g1, g2, . . . , gn be drawn independently from {g∗j} according to P (gi = g∗j ) = γj. Set

fn = 1
n

∑n
i=1 gi, the sample average, and note that E[fn] = f ∗ with expected error

E
[
‖fn − f ∗‖2

]
= E

[∥∥ 1
m

∑n
i=1(gi − f ∗)

∥∥2
]

=
1

n2

(
n∑
i=1

E [〈gi − f ∗, gi − f ∗〉] +
∑

1≤i 6=j≤n

E [〈gi − f ∗, gj − f ∗〉]

)

=
1

n
E
[
‖g − f ∗‖2

]
+

(
1 +

1

n

) ∑
1≤k,`≤m

γkγ` 〈g∗k − f ∗, g∗` − f ∗〉

=
1

n
E[‖g − f ∗‖2]

=
1

n
(E[‖g‖2]− ‖f ∗‖2)

≤ 1

n
(b2 − ‖f ∗‖2).

This implies there exist specific g1, . . . .gn for which ‖fn − f ∗‖2 ≤ (1/n)(b2 − ‖f ∗‖2).

Noting that ‖f ∗‖2 > ‖f̄‖2 − 2δ
n
‖f̄‖ we have by the triangle inequality

‖f̄ − fn‖2 ≤ 1

n
(b2 − ‖f ∗‖2) +

2δ

n

√
1

n
(b2 − ‖f ∗‖2) +

δ2

n2

≤ 1

n
(b2 − ‖f̄‖2 +

2δ

n
‖f̄‖) +

2δ

n

√
1

n
(b2 − ‖f ∗‖2) +

δ2

n2

=
b2 − ‖f̄‖2

n
+ δ

(
2

n
‖f̄‖+

2

n

√
1

n
(b2 − ‖f ∗‖2) +

δ

n2

)
,

which can be upper-bounded as desired by the appropriate choice of δ.
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Thus, using the L2 norm over µ as ‖ · ‖, this lemma asserts that if we can show

f̄(x) = f(x)− f(0) is in the closure of the convex hull of

Fσ = {aσ(w · x + b) : |a| ≤ 2C,w ∈ Rd, b ∈ R},

we can prove our result by sampling a convex combination that ε-approximates f .

We will demonstrate this membership via the sequence of inclusions

f̄ ∈ ConvFcos ⊆ ConvFstep ⊆ ConvFσ,

with Fstep and Fcos to be defined shortly.

Lemma 2.3. For each f ∈ ΓB,C , f̄ is in the closure of the convex hull of

Fcos =

{
γ

|ω|B
(

cos(ω · x + b)− cos(b)
)

: ω 6= 0, |γ| ≤ C, b ∈ R
}
.

Proof. Let Ω = Rr − 0. By definition of ΓB,C and the fact that f is real-valued,

f̄ = Re

∫
Ω

(eiω·x − 1)eiθ(ω) dF (ω)

=

∫
Ω

(
cos
(
ω · x + θ(ω)

)
− cos

(
θ(ω)

))
dF (ω)

Defining Λ(dω) as the probability distribution |ω|BF (dω)/Cf,B, we then have

f̄ =

∫
Ω

Cf,B
|ω|B

(
cos
(
ω · x + θ(ω)

)
− cos

(
θ(ω)

))
dΛ(ω), (2.2)

and f̄ is now expressed as an infinite convex combination of elements from Fcos. We

claim this entails the result for the L2 norm according to any distribution µ. Supose

{ωi}mi=1 is a random sample of n points from Ω drawn according to Λ. Then, writing

the integrand in (2.2) as g(x,ω), the expected square of the L2(µ,B) error between

f̄ and the sample average is

E

∫
Br

(
f̄ − 1

n

n∑
i=1

g(x,ωi)

)2

dµ(x)

 =

∫
Br

E

(f̄ − 1

n

n∑
i=1

g(x,ωi)

)2
 dµ(x)

=
1

n

∫
Br

var
(
g(x,ω)

)
dµ(x)

≤ 1

n

∫
Br

E[g(x,ω)2] dµ(x)

and, by some careful trigonometry, ≤ 1

n

∫
Br

E
[
C2 |x · ω|2

|ω|2B

]
dµ(x)

≤ C2

n
.

Thus, by sending n→∞, we have a convergent sequence of functions to f̄ as desired.
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Lemma 2.4. Define

Fstep = {γ step(ω · x− b) : |γ| ≤ 2C, |ω|B = 1, |b| ≤ 1},

where step(x) = 1 if x ≥ 0 and 0 otherwise. Then ConvFcos ⊆ ConvFstep.

Proof. We may write any function in Fcos as g ◦ h(x) with

g(x) =
γ

|ω|B
(

cos(|ω|B x+ b)− cos(b)
)

and h(x) =
ω · x
|ω|B

.

If we can approximate any g with a linear combination of step functions, then we are

done. Note that h(x) ∈ [−1, 1] for x ∈ B, so we concern ourselves with approximating

g only over [−1, 1]. The derivative of g is bounded by |γ| < C, implying g is uniformly

continuous and thus uniformly approximated by linear combinations of step functions.

In particular, there exists a sequence of partitions {(−1 = b0 < b1 < · · · < bk = 1)}∞k=1

for which

gk(x) = g(b0) step(x− b0) +
k∑
i=1

(
g(bi)− g(bi−1)

)
step(x− bi)

unif−−→ g(x).

Because g(0) = 0 and its derivative is bounded by |γ|, we have max−1≤x≤1 |g(x)| ≤ qC,

implying the coefficients in gk(x) are each bounded by 2C. Thus the function gk◦h(x)

constitutes the desired approximation.

Lemma 2.5. ConvFstep ⊆ ConvFσ.

Proof. Assuming the distribution of ω · x induced by µ is continuous for every α,

we obtain a pointwise approximation of step(ω · x− b) by taking α arbitrarily large

in σ(α(ω · x − b)). By the dominated convergence theorem, the limit also holds in

L2(µ,B).

The case where the distribution of ω ·x is not continuous requires a small technical

modification; we refer the reader to the original paper [3] for more details.

Proof of Theorem 2.1. The result follows from Lemma 2.2 and the inclusions just

demonstrated. There are three cases.

If ‖f̄‖ = 0 then f is equal to a constant µ-almost everywhere on B and the

approximation bound is trivially true.

Now suppose ‖f̄‖ > 0. If |σ| ≤ 1, then by definition elements of Fσ are bounded

by 2C. Therefore we may apply Lemma 2.2 with b = 2C.
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If |σ| > 1, then slightly more work is required. Using Lemma 2.2 and the mem-

bership of f̄ in the closure of Fstep, obtain a convex combination of n functions which

approximates f̄ within
(2C)2 − 1

2
‖f̄‖2

n

according to the L2(µ,B) norm. We may then replace each step function in the

convex combination with a sufficiently-sharp approximation from Fσ, thanks to the

inclusion Fstep ⊆ Fσ to obtain a total L2(µ,B) error bounded by 4C2/n.

So what functions are in ΓB,C? Barron provides a thorough set of examples in

Section 9 of [3], but of special interest to us is the membership of polynomials in ΓB,C .

By the Stone-Weierstrass theorem, polynomials are dense in C[K] for K a compact

subset of Rr. Thus Barron’s result also constitutes a universality theorem, if in a

somewhat round-about fashion.

For a reader interested in deep networks, however Barron’s result is not partic-

ularly satisfying. Again our mathematical techniques are restricted to operations

in linear spaces, in this case convex combinations, made possible by the especially

simple structure of depth-two ANNs. Barron has demonstrated a nice class of func-

tions which admit a tractable approximation rate by depth-two networks, but this

class is fairly opaque and restrictive, and moreover Γ tells us nothing about classes

of functions which admit linear or polynomial approximation rates when using deep

network architectures. We would expect, for instance, that deeper networks have

good rates (as width increases) for larger classes of functions. Fortunately, we can

without too much work generalize Barron’s result for larger classes of functions that

admit efficient approximation rates by deep networks.

We will require a strong form of continuity to describe these functions.

Definition 10. A function f : K → R is (K,Lp)-Lipschitz if for all x,y ∈ K, we

have

|f(x)− f(y)| ≤ K‖x− y‖Lp .

Letting A and B be bounded subsets of Rr and Rm respectively, begin by defining

ΓA,B(C,K) as the class of functions f : A→ B for which fi ∈ ΓA,C and fi is (K,L∞)-

Lipschitz for each i, where fi is the ith component of f . Then we have the following:

Corollary 2.5.1. Suppose A,B are bounded subsets of Rr,Rm respectively and f :

A→ Bd can be decomposed as

A
f−→ Bd = (A = B0)

g1−→ B1
g2−→ B2 · · ·Bd−1

gd−→ (Bd = B),
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where each Bi is a bounded subset of Rm and gi ∈ ΓBi−1,Bi(C,K) for each 1 ≤ i ≤ d.

Then the L∞ approximation rate of f by sigmoidal networks of depth d is

O

(
KdC√
n

)
,

where n is the width of the network.

Proof. The bound we will prove is

‖f − f̄‖∞ ≤
2C
∑d

i=1K
i

√
n

For each i, let ḡi = (ḡi1, . . . , ḡim), where ḡij is the nth approximation of gij in the sense

of Barron. Then the L∞ error of ḡi is bounded by

‖gi − ḡi‖∞ = sup
x∈Bi−1

max
1≤j≤m

|gij(x)− ḡij(x)|

= max
1≤j≤m

sup
x∈Bi−1

|gij(x)− ḡij(x)|

≤ max
1≤j≤m

‖gij − ḡij‖2

≤ 2C√
n

by Barron.

We now prove the bound inductively. The case for d = 1 is already done, so let d > 1.

Then

‖f − f̄‖∞ ≤ sup
x∈A

max
1≤i≤w

∣∣gd((gd−1 ◦ · · · ◦ g1)(x)
)
− ḡd

(
(ḡd−1 ◦ · · · ◦ ḡ1)(x)

)∣∣
≤ max

1≤i≤w
sup
x∈A

(∣∣gd((gd−1 ◦ · · · ◦ g1)(x)
)
− gd

(
(ḡd−1 ◦ · · · ◦ ḡ1)(x)

)∣∣
+
∣∣gd((ḡd−1 ◦ · · · ◦ ḡ1)(x)

)
− ḡd

(
(ḡd−1 ◦ · · · ◦ ḡ1)(x)

)∣∣)
≤ K‖(gd−1 ◦ · · · ◦ g1)(x)

)
− (ḡd−1 ◦ · · · ◦ ḡ1)(x)‖∞ +

2C√
n

≤ K

(
2C√
n

d−2∑
i=0

Ki

)
+

2C√
n

by induction

=
2C√
n

d−1∑
i=0

Ki.

Therefore, if we have reason to suspect the the target function we are trying to

learn can be written as a finite composition of functions in Γ, this corollary implies

that we can achieve acceptable error by working with networks of depth approximately

d and looking at increasing widths.

25



However: let ΓdA,B(C,K) be the set of functions f equal to d compositions of func-

tions in ΓA,B(C,K). It is not known how much larger ΓdA,B(C,K) is than ΓA,B(C,K).

In particular, is ΓdA,B(C,K) ⊆ ΓA,B(C ′, K ′) for some C ′, K ′? If this is the case,

then this corollary is much less interesting, because it doesn’t represent any gain in

representational power by deep neural networks, and instead suggests Barron’s class

Γ is too restrictive to benefit from depth. We leave this as an open question, and

transition now to calculations of lower bounds on the size of networks required to

approximate certain classes of functions.

2.2 Lower Bounds

Here we present two lower bounds for classes of functions, one inspired by a proof

technique from a classic result of Shannon in the boolean circuit literature, and the

other based on VC-dimension bounds for ANNs.

2.2.1 A lower bound for Lipschitz functions

One of the earliest results in boolean circuit theory is from Shannon’s seminal pa-

per [33]. Therein he shows that there aren’t enough small boolean circuits to accom-

modate the 22n different functions {0, 1}n → {0, 1}. Here we show a similar argument

goes through for neural networks and Lipschitz functions, though a different technique

must be used to count the number of sufficiently different functions implemented by

small ANNs. This process takes the form of bounding the size of a minimal ε-net,

and it is likely the methods used therein could be substantially improved. Even so,

we obtain the analogous result we seek.

Theorem 2.6. Let B, J,K > 0 be fixed. Then, working in the L∞ norm, for suf-

ficiently large r there exist (K,L∞)-Lipschitz functions {f} from [0, 1]r → R such

that for all ε ∈ (0, K), each f cannot be ε-approximated by neural networks with

J-Lipschitz activation functions, weights and biases bounded by B, and

2r/3

3
√

2 log(7JB/ε)
nodes. (2.3)

Proof. Consider the set of K-Lipschitz functions defined as follows: For each β :

{0, 1}n → {0, 1} define fβ such that fβ(x) = K/2 if β(x) = 1 and −K/2 if β(x) = 0.

These functions may be extended to K-Lipschitz functions over [0, 1]r. Thus we have

at least 22r K-Lipschitz functions such that for any pair f, f ′ we have ‖f − f ′‖ ≥ K.

26



For a fixed J-Lipschitz activation function σ, let N be the set of neural network

architectures of size n with internal units assigned activation function σ and sink

units assigned the identity. Define

F =
⋃
N∈N

F(N , B).

We now bound the size of a minimal ε-net of F.

To that end, we first consider a specific N ∈ N and bound the size of minimal

ε-net of F(N , B). Taking the programmable parameters of N as the space [−B,B]t

for some t, we will do this by defining a lattice

Lδ = (δZ)t ∩ [−B,B]t

such that F (Lδ) (the set of network functions defined by parameter vectors in Lδ) is

an ε-net of F(N , B).

Consider a unit connected to a source node in N . By a similar argument to that

used to bound the error in the proof of Corollary 2.5.1, changing w or b by δ creates

at most a δ(J + 1)d ≤ δ(J + 1)n change in the output of N , where d is the depth of

the network. We want δ(J + 1)n < ε, so setting δ < ε/(J + 1)n ensures F (Lδ) is an

ε-net.

What is |Lδ|? Each dimension contributes a point every δ from −B to B, so in

total L has
2B

ε/(Jn)
=

2BJn

ε

points in each of t dimensions. An upper bound on the number of programmable

parameters on each vertex is n + 1 (one for the bias), so t ≤ n2 + n. Hence there is

an ε-net of N with size (
2S2MJS

ε

)n2+n

.

There are at most 3(n2) networks on n nodes, so as a grand total the size of an ε-net

of F is upper-bounded by

3n
2

(
2MJn

ε

)n2+n

≤
(

2M

ε

)n2+n

(3J)n
3+n2 ≤

(
6BJ

ε

)2n3

for sufficiently large n.

Substituting the choice of network size (2.3) for n we see there are at most

22nlog(6JM/ε)/log(7JM/ε)

functions in an ε-net of F for sufficiently large n. This number is smaller than 22n ,

implying the result.
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2.2.2 A lower bound for polynomials

We now present a clever construction by Schmitt [32] to give lower bounds on the

sigmoidal network size required to represent polynomials. The analysis of this con-

struction depends on upper bounds for the VC dimension of a given neural network

architecture A, which is a measurement of the richness of F(A).

Definition 11 (VC Dimension). Let S ⊆ Rm and let F be a family of functions

f : Rr → {0, 1}. We say F shatters S if for every boolean function β : S → {0, 1},
there exists an fβ ∈ F such that fβ|S = β. The Vapnik-Chervonenkis dimension of

F is the greatest cardinality among all sets shattered by F .

In the case of a neural network N we define its VC dimension to be that of the

function step(N + 1/2) : Rr → {0, 1}.

The VC dimension bounds we use are from Karpinski & Macintyre [15]

Lemma 2.7. (Karpinski & Macintyre 1997) Sigmoidal neural networks have VC

dimension at most O(n`), where n is the number of nodes and ` is the number of

parameters.

Their proof of this fact uses techniques from model theory and algebraic geometry

and is outside the scope of this thesis.

Schmitt’s construction is motivated by the following Lemma, given in [16].

Lemma 2.8 (Koiran & Sontag 1997). Let pn be defined by

pn(x) =

{
4x(1− x) n = 0

p1(pn−1(x)) n ≥ 1.

Fix n ∈ N and define [n] = {0, 1, 2, . . . , n − 1}. Then for all β : [n] → {0, 1}, there

exists a wβ ∈ R such that for all i ∈ [n]

pi(wβ) > 1/2 if β(i) = 1 and

pi(wβ) < 1/2 if β(i) = 0.

Proof. Let β : [n] → {0, 1} be given. We define a sequence wn, wn−1 . . . , w0, wβ such

that for all i ∈ [n], wi = pi(w) and wi is bounded as desired.

If β(n − 1) = 0, choose wn−1 = 1/4 and if β(n − 1) = 1, choose wn−1 = 3/4.

Note that all for all x ∈ (0, 1), x has two preimages in p0, one in (0, 1/2) and one in

(1/2, 1). So for each i = n− 2, n− 3, . . . , 0 we may choose wi ∈ p−1
0 (wi+1) such that

wi > 1/2 if β(i) = 1 and

wi < 1/2 if β(i) = 0.
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Finally, choose wβ arbitrarily in p−1
0 (w0). Observe that by construction, for each

i ∈ [n], wi = pi(wβ) is bounded as desired.

This lemma means that if we can construct a network architecture A that allows

us to range over the is in pi(w) by changing inputs and allows us to range over ws by

adjusting weights, then F(A) can shatter some [n].

Theorem 2.9 (Schmitt 1999). Sigmoidal networks approximating (pn)n>1 on [0, 1]

with L∞ error at most O(2−n) require at least Ω(n1/4) nodes.

Proof. We construct a network architecture with four inputs. The last three inputs

will be used to range over i ∈ [n3] as written in base n (and thus requiring three

digits) and the first will be kept at 1. Define Nw(1, i, j, k) as

w

where each box represents a sub-network implementing the labeled function; here

P : Rn+1 → R is a function that has

P(x0, . . . , xn−1, y) = xy

for y ∈ [n]. Observe that for (i, j, k) ∈ [n]3, Nw(1, i, j, k) computes pk(pjn(pin2(w))) =

pin2+jn+k(w) as desired. Further, note that for λ = 0, 1, 2 each column of pinλs may

also be implemented as

29



=

Hence in order to derive an implementation of Nw(1, i, j, k), we need only imple-

ment p0, pn, pn2 , and P.

By Lemma 1 in [16] (reproduced below as Lemma 2.10), there exists a network

architecture comprised of O(n) linear, multiplication, and division gates which admits

network that (ε, L∞)-approximates P. Now suppose that we replace each pnλ with

a sigmoidal network approximation with error bounded by O(2−n). Straightforward

analysis shows this network still shatters [n]3.

By the Theorem 7 from [15] (given above as Lemma 2.7), the VC dimension of

Nw is O(m2) where m is the number of vertices. But Nw shatters a set of size n3,

so for some λ ∈ {0, 1, 2} the number of nodes in a sigmoidal network implementing

pnλ must be lower-bounded by Ω(
√
n). This implies a lower bound of Ω(n1/4) for

sigmoidal networks implementing pn.

Lemma 2.10. (Koiran & Sontag, 1997) For all n > 1, there exists a network archi-

tecture N with O(n) units which admits a sequence of networks N1,N2, . . . such that

limi→∞Ni = P.

Proof. Consider the sequence of functions

fk(x0, . . . , xn−1, y) =

(
n−1∏
i=0

(y − i− 1/k)

)(
n−1∑
i=0

aixi
y − i− 1/k

)
,

where ai = 1/
∏

j 6=i(i − j). In this form each fk can be implemented by a network

with a single multiplication unit, n division units, and n + 1 linear units, for a total

of O(n). Observe that we may rearrange terms to obtain

fk =
n−1∑
i=1

xi
∏
i 6=j

x− j − ε
i− j

,

which converges pointwise to P on the relevant domain.
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Chapter 3

Exponential Separations

3.1 What is an exponential separation?

Inspired by separation results in the boolean circuit literature (e.g., [30]), as well as

a desire to understand expressivity’s role in deep learning, researchers have found a

number of functions that are easy to approximate by deep networks (size requirements

are polynomial in depth, input dimension, or error) but hard to approximate by

shallow neural networks (size requirements are exp in the same quantities).

This is important for architecture design because while it may be intractable to

learn such functions with a shallow network (networks of tractable size wouldn’t be

able to offer an approximations), it is easy to learn them with deeper networks. If we

could characterize the sorts of functions amenable to this efficiency gain with depth,

we would be well on our way to avoiding underfitting.

Before we describe these functions, we will take a moment to understand sepa-

rations in general, and look for some justification as to why we desire exponential

separations, rather than polynomial or somewhere in-between. This justification is

based on the concept of mutual simulation, borrowed from computational ideas like

Kolmogorov complexity. In particular, we aim to show that if two classes of networks,

each with their own assignments of activation functions, can efficiently simulate the

units of the other, then any constant-depth separation result that holds for one net-

work class will automatically hold for the other.

If a neural architecture A is assigned activation functions from some basis G, then

we call A a G-network architecture and we call an N ∈ F(A) a G-network. Let us

formalize what a separation result looks like:

Definition 12. (Network Separations) Suppose F = {fi}∞i=1 is a sequence of func-

tions. Fix a gateset G and suppose B = {Bi}∞i=1 and G = {Gi}∞i=1, where each Bi, Gi
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is a set of G-networks. Further, let g : N × (0,∞) → N and b : N → N be functions

such that for each i and ε, b(i) ≥ g(i, 1/ε).

Then we say F (g, b)-separates B from G along i if there exists an N such that

for all i > N , for all ε > 0, the following two conditions hold:

i. There exists an N ∈ Gi with at most g(i, 1/ε) nodes for which ‖N − fi‖∞ < ε,

ii. There exists an ε′ > 0 such that for all networksW ∈ Bi that have ‖W−f‖∞ <

ε′, |W| ≥ b(i).

We call the separation exponential if g is a polynomial in i and 1/ε and b is an

exponential in i.

As an example, here is an exponential separation result we will see later on in this

chapter:

Theorem. Let Fr : Sr−1 × Sr−1 → R be given by Fr(x,x
′) = sin(πr3 〈x,x′〉). Then

for all ε > 0, r ≥ 2,

1. There exists an ReLU network of depth 3 and width at most 16πd5/ε which

(ε, L2)-approximates Fr,

2. To obtain a (1/(50e2π2), L2)-approximation of Fr with a 2-layer ReLU network

with weights bounded by 2r, we require at least 2Ω(r log r) units.

Here {Fr} is exponentially separating depth-two ReLU-networks from depth-three

ReLU-networks along input dimension r.

Definition 13 (Gateset Simulation). Let G and H be activation function bases. We

then say H simulates G if for all g ∈ G and all ε > 0 there exists an H-network N
such that ‖g −N‖∞ < ε. If there exists such an N with |N | ∈ poly(1/ε) we say H
efficiently simulates G.

If G and H efficiently simulate each other using depth-two networks, we say they

are mutually depth-two-simulating.

Remark 3.1. Sigmoids and ReLUs are mutually depth-two-simulating.

Lemma 3.2 (Simulation error). Suppose N is a network with gateset G and gateset

H simulates G. Let the network N ′ be obtained by replacing each unit σ(w · x) in N
with its simulation with gates in H. Then if N has depth d and all functions in G
are (K,L∞)-Lipschitz, we have

‖N −N ′‖∞ ≤ ε
d−1∑
i=0

Ki,(
≤ ε(K + 1)d−1

)
.
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The proof technique of this lemma is nearly identical to that of Corollary 2.5.1

and so we will omit the proof.

Theorem 3.3. Suppose G and H are depth-2 mutually simulating (K,L∞)-Lipschitz

neural gatesets and that F (poly,exp)-separates depth-db networks from depth-dg net-

works on G Then F also (poly,exp)-separates depth-db networks from depth-dg net-

works on H.

Proof. Let ε > 0 be given. Then there’s a G-network N ∈ Gi for which ‖N − fi‖∞ <

ε/2 and |N | = poly(i). By Lemma we have a network W in H with the same depth

in poly(Kdg/ε) · poly(i) = poly(1/ε, i) nodes.

Now suppose by contradiction that for all ε, there’s a db-layer network W ′ in H
for which ‖fi −W ′‖∞ ≤ ε and |W ′| is sub-exponential in i and 1/ε. Then again by

Lemma we have a subexponential-size G-network also approximating fi of depth db.

This cannot be.

This theorem motivates to an extent why we search for exponential separations:

as long as they separate fixed-depth network classes, they are agnostic of choice of

network basis among those which are equivalent in approximation power up to a

polynomial.

We present two sorts of exponential separations for neural networks: some which

separate depth-two networks from depth-three networks along input dimension; and

one which separates depth d networks from depth d3 networks along depth d itself.

3.2 Separating depth-two and depth-three networks

There exist a number of results of varying generality which separate depth-two net-

works from those of depth three. Arguably the “nicest” of these is an extension of a

result of Eldan & Shamir [8] to a more natural setting by Safran & Shamir [29]:

Theorem 3.4. (Safran & Shamir, 2017) For any continuous probability distribution

µ, the indicator of the Euclidean unit ball in Rr can be (ε, L2, µ)-approximated to any

accuracy ε using a 3-layer network with O(d/ε) units. On the other hand, there exists

a continuous probability distribution γ such that any 2-layer network requires exp(r)

units to provide an approximation of accuracy better than O(1/d4).

This result is “nice” because it shows depth separation on a natural function, or

one that a learning algorithm may encounter in application. This is an improvement

over the result upon which it is based, which separates depth-two from depth-three
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networks via a function whose Fourier transform is an irregular sequence of nested

shells.

We forgo proofs of either of these theorems as they are long, technical, and share

most important conceptual elements with the following result of Daniely [7], the proof

of which is somewhat easier-going.

Theorem 3.5. (Daniely 2017) Let Fr : Sr−1 × Sr−1 → R be given by Fr(x,x
′) =

sin(πr3 〈x,x′〉). Then for all ε > 0, r ≥ 2,

1. There exists an ReLU network of depth 3 which (ε, L2)-approximates Fr,

2. To obtain a (1/(50e2π2), L2)-approximation of Fr with a 2-layer ReLU network

with weights bounded by 2r, we require at least 2Ω(r log r) units.

We prove this theorem via a series of lemmas. The proofs themselves have been

left largely as-is (save for a few notational changes and expansion of some steps),

but they have completely reorganized for clarity, concision, and to better suit the

surrounding discussion. We address parts 1 and 2 of Theorem 3.5 separately.

Nonexistence of an efficient shallow approximation:

Let inner product functions denote those functions f : Sr−1 × Sr−1 → R which

take the form of φ(〈x,x′〉) for some φ : [−1, 1] → R. Also, let say a function f :

Sr−1 × Sr−1 → R is v,v′-separable if it can be written as ψ(〈v,x〉 , 〈v′,x′〉) for some

ψ : [−1, 1]2 → R. Observe that separable functions contain all functions representable

by depth-two ANNs.

We show the first claim of Theorem 3.5 in two steps. First we prove a general

fact about the relationship between the approximability of an inner product function

f by low-degree polynomials and approximability of f by separable functions. We

then show the sine function is poorly approximated by low-degree polynomials. To

prepare, we must collect some notation for and facts about harmonic analysis on the

sphere. See e.g., [2] for a thorough treatment.

The surface area of Sr−1, denoted |Sr−1| may be calculated by integrating (r− 2)-

dimensional slices of the (r − 1)-sphere along a single axis in Rr. In particular,

|Sr−1| = |Sr−2|
∫ 1

−1

(1− x2)(r−3)/2 dx with

∫ 1

−1

(1− x2)(r−3)/2 dx =

√
πΓ( r−1

2
)

Γ( r
2
)

,

where Γ is Euler’s Gamma function. Thus dividing the first representation by the
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second we have that

1 =
Γ( r

2
)

√
πΓ( r−1

2
)

∫ 1

−1

(1− x2)(r−3)/2 dx,

and so µr(x) =
Γ( r

2
)

√
πΓ( r−1

2
)
(1− x2)(r−3)/2

denotes a univariate probability distribution with support on [−1, 1] that is a pro-

jection of the uniform distribution over Sr−1 onto a single line through the origin,

say along the first component x1 of a vector x ∈ Rr. This constitutes Fact 1. Note

that we will assume in the lemmas that follow that the functions begin considered

are L2(µ)-integrable.

We now make the following definitions

Pn(x) =
2n+ r − 4

n+ r − 3
xPn−1(x)− n− 1

n+ r − 3
Pn−2(x) with P0(x) = 1, P1(x) = x,

Nr,n =

(
r + n− 1

r − 1

)
−
(
r + n− 3

r − 1

)
,

hn(x,x′) =
√
Nr,nPn(〈x,x′〉) for x,x′ ∈ Sr−1 × Sr−1,

Lx
n = hn(x,x′).

Pn is the nth r-dimensional Legendre Polynomial. In [2] the following are shown:

Fact 2. For r ≥ 2, the sequence {
√
Nr,bPn}∞n=0 is an orthonormal basis of the Hilbert

space L2(µr).

Fact 3. For every n, ‖Pn‖`∞ = 1 and Pn(1) = 1.

Fact 4.
〈
Lx
i , L

x′
j

〉
= δijPi(〈x,x′〉), where δij is the Dirac delta function. (Note this

follows quickly from Fact 2).

We will also be interested in the approximability of a function f by polynomials of

bounded degree. To that end, let Pn,r ⊂ L2(µr) denote the subspace of polynomials

of degree at most n− 1 and define

An,r(f) = min
p∈P
‖f − p‖L2(µr),

noting that such a minimum exists by the Hilbert projection theorem. As defined,

An,r(f) is also the norm of the projection Pn,r(f) of f on the orthogonal complement

of P ; i.e., An,r = ‖Pn,r(f)‖L2(µr). We will call this Fact 5.
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Lemma 3.6. Let f be an inner product function anr g1, . . . , gk be separable functions.

Then

‖f −
∑k

i=1 gi‖
2 ≥ An,r(f)

(
An,r(f)− 2

∑k
i=1 ‖gi‖√
Nr,n

)
.

Proof. First we observe two Hilbert space isomorphisms. Let Hr ⊂ L2(Sr−1 × Sr−1)

be the space of inner product functions. Then for f = φ(〈·, ·〉) ∈ Hr

‖f‖2 =

∫
x∈Sr−1

∫
x′∈Sr−1

φ(〈x,x′〉) dx′ dx

=

∫
x∈Sr−1

φ(〈x, 1〉) dx by symmetry

=

∫
x1∈[−1,1]

φ(x1) dµ(x1) by Fact 1.

= ‖φ‖2
L2(µ)

Therefore we have an isomorphism of the Hilbert spaces L2(µr) and Hr given by

f ↔ φ. This implies that the projection operator Pn,r truncates Legendre polynomial

representations of inner product functions. That is,

Pn,r

(
∞∑
i=0

αihi

)
=
∞∑
i=n

αihi.

Let v,v′ ∈ Sr−1 and denote the space of (v,v′)-separable functions as Hv,v′ ⊂
L2(Sr−1 × Sr−1). Our second isomorphism is between L2(µr × µr) and Hv,v′ via the

mapping f ↔ ψ and is derived similarly. Note that in particular, this isomorphism

sends the orthonormal basis {
√
Nr,nPn⊗

√
Nr,mPm}∞n,m=0 to {Lv

n ⊗Lv′
m}∞n,m=0, where

⊗ is the product in the respective Hilbert spaces.

Further, observe that∫
x

∫
x′
hn(x,x′)Lv

i (x)Lv′

j (x′) dx′ dx =

∫
x

Lv
i (x)

∫
x′
hn(x,x′)Lv′

j (x′) dx′ dx

=

∫
x

Lv
i (x)

〈
Lx
n, L

v′

j

〉
dx

= δnj

∫
x

Lv
i (x)Pn(〈x,v′〉) dx by Fact 4

=
δnj√
Nr,n

〈
Lv
i , L

v′

n

〉
def’n of Lv′

n

=
δinδjnPn(〈v,v′〉)√

Nr,n

. (3.1)
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By Fact 2, we may write f as f =
∑∞

i=0 αihi. Also, let g =
∑k

j=1 gj where, by

the given, gj depends on 〈v,x〉 , 〈v′,x′〉 for v,v′ ∈ Sr−1. Again from Fact 2, we may

write each gj as gj(x,x
′) =

∑∞
`,q=0 β

j
`,qL

vj
` (x)L

v′j
q (x′).

Now certainly ‖f − g‖2 ≥ ‖f‖2 − 2 〈f, g〉. But by (3.1) we see that f is or-

thogonal to L
vj
` ⊗ L

v′j
q whenever ` and q differ. So we may replace each gj with∑∞

`=0 β
j
`L

vj
` (x)L

v′j
` (x′) to obtain

‖f − g‖2 =
∞∑
i=0

∥∥∥∥∥αihi −
k∑
j=1

βji
(
L
vj
i ⊗ L

v′j
i

)∥∥∥∥∥
2

≥
∞∑
i=n

∥∥∥∥∥αihi −
k∑
j=1

βji
(
L
vj
i ⊗ L

v′j
i

)∥∥∥∥∥
2

≥
∞∑
i=n

α2
i − 2

∞∑
i=n

k∑
j=1

〈
αihi, β

j
i

(
L
vj
i ⊗ L

v′j
i

)〉
= ‖Pn,r(f)‖2 − 2

∞∑
i=n

k∑
j=1

αiβ
j
iPi(

〈
vj,v

′
j

〉
)√

Nr,k

by the isometries

≥ ‖Pn,r(f)‖2 − 2
k∑
j=1

∞∑
i=n

|αi||βji |√
Nr,k

by Fact 2

≥ ‖Pn,r(f)‖2 − 2√
Nd,n

k∑
j=1

(
∞∑
i=n

|αi|2
) 1

2
(
∞∑
i=n

|βji |2
) 1

2

≥ ‖Pn,r(f)‖2 −
2‖Pn,r(f)‖

∑k
j=1 ‖gj‖√

Nr,n

by the triangle inequality,

and using Fact 5 to replace ‖Pn,r(f)‖ with An,r(f) we have our result.

Lemma 3.7. Let gr,m(x) = sin(π
√
rmx). Then for sufficiently large r and any n ≥ 0

An,r(gr,m(x)) ≥
√
m− n
4eπm

Refer to the original paper for [7] a proof of this lemma; the work amounts to

counting intervals between in [−1, 1] in which g and p differ in sign and summing

their areas.

Proof of 3.5, Part 1. Write F as f(〈·, ·〉) for some f : [−1, 1]→ R. Observe that any

neural unit with weights bounded by B implements a separable function with norm

at most Bmax|x|≤
√

4rB |σ(x)| and that the output bias is also (vacuously) separable
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with norm at most B. Thus by Lemma 3.6 we have for all depth-two networks N
with k hidden units,

‖f −N‖2 ≥ An,r(f)

(
An,r(f)−

2kBmax|x|≤
√

4rB |σ(x)|+ 2B√
Nr,n

)
.

Set m = r3/
√
r so f = gr,m = sin(πr3x), and set n = r2. Then

An,r(f) ≥
√
r5/2 − r2

4eπr5/2
.

The limit of the RHS is 1/(2
√
eπ) so for sufficiently large r we have An,r(f) ≥ 1/(5eπ).

Hence to have a 1/(50e2π2)-approximation of F , the number of hidden neurons k must

be at least √
Nr,r2

20eπ22r(1 +
√

4r) + 2r+1
= 2Ω(r log r).

Existence of an efficient depth-three approximation:

This part of Theorem 3.5 relies on a construction in [8] to square the input in a

single hidden layer. This construction is then modified to compute the inner product,

and another hidden layer is added to compute the sin function. We direct the reader

to the original paper [7] for a more thorough treatment.

Observe that in order to obtain a strong separation, Daniely had to again exploit

the special structure of depth-two neural networks. In particular, these techniques

don’t suggest an easy generalization to finding a depth 3-4 separation or similar. It

appears that when depth is any greater than 2, it is drastically easier to construct

a specific network and analyze it, in comparison to making claims that a certain

approximation is impossible. The next result gives separations at any depth, but

must sacrifice the sharpness of the separation in return for generality.

3.3 Loose exponential separation at arbitrary depth

In [34] Telgarsky proves a general exponential depth separation using any units of the

following sort:

Definition 14. A function f : Rr → R is (t, α, β)-semi-algebraic if for some m there

are polynomials {pi}mi=1 each of maximum total degree β, polynomials {qi}ti=1 of total

degree at most α, and for each i ∈ [m], subsets Li, Ui of [t] such that

f(x) =
m∑
i=1

{
pi(x) if qj(x) < 1/2 for all j ∈ Li and qj(x) ≥ 1/2 for all j ∈ Ui,
0 otherwise1.
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Seen another way, the qj define regions of Rr in which we may select, via the

definitions of Li, Ui, which pi are included in the sum. Notes the absence of m in

the name (t, α, β)-algebraic. Telgarsky gives somewhat vague reasons for this, but

here’s a more direct argument: we claim m is never more than 3t. Indeed, there are

at most 3t ways to restrict a polynomial pi according to the qjs. So if m > 3t, then

two polynomials, say p, p′ have identical restrictions. We can thus replace them both

with the single polynomial p+ p′, and if we repeat this process for all duplicates, we

now have m ≤ 3t. Hence a bound on the size of m is implicit in the inclusion of t in

‘(t, α, β)-semi-algebraic’.

The definition of semi-algebraic is quite general. We are particularly interested

in the fact that ReLUs are (1, 1, 1)-semi-algebraic, though the class (for appropriate

(t, α, β) also contains max and min gates, as well as decision trees. (See the original

paper [34] for more).

Further, Telgarsky proves his result for fully connected architectures, defined as

follows:

Definition 15. If the vertices of A can be placed in an ordered partition P =

(`1, . . . , `d) such that the subgraph induced by `i ∪ `i+1 for all i is a fully-connected

bipartite graph and there are no edges between vertices in non-adjacent `i, `j, we say

A is a fully-connected architecture.

This is not a major restriction, however, as it’s easy to see that non-fully-connected

architectures can be embedded in fully-connected architectures without much over-

head.

Theorem 3.8. Let d, r ≥ 1 and let C denote the set of functions computed by depth-

d networks with at most 2d/(tαβ) (t, α, β)-semi-algebraic units. Then there exists

f : Rr → R computed exactly by an ReLU neural network of depth d3 +5, size 2d3 +4,

and 4 + r distinct programmable parameters such that

inf
g∈C

∫
[0,1]r
|f(x)− g(x)| dx ≥ 1

32
.

We will prove this in a series of lemmas, following Telgarsky’s outline: first we show

that functions with few oscillations are bad approximators of those with many; then

we show shallow semi-algebraic networks exhibit few oscillations; finally we construct

1Note that this is a slightly different, but equivalent, definition to that which Telgarsky presents;
in particular, in his paper there are zeros where there are presently 1/2s. This change was made to
deal with a slight inconsistency in the definition of crossing number (to be defined on the next page)
and its use in Lemma 3.6 of the original paper.
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a deep ReLU network with many oscillations. In comparison to Telgarsky’s original

version we condense the exposition of each lemma at the expense of generality, though

the actual theorem statement here reflects a slight improvement of his bounds.

First, a couple definitions. Let f : R → R be piecewise-continuous and define

f̄ = 1{x:f(x)≥1/2}. Then the set {x : f̄ = 1} is the union of a set U of disjoint intervals.

This means R−U is also the union of a set L of disjoint intervals. Define If = U ∪L
and say the crossing number of f is Cr(f) = |If |. In general the crossing number

may not be finite, but it will in our case because we are working with compositions

of piecewise-polynomial functions.

Lemma 3.9. Let f and g be piecewise-continuous maps R → R with finite crossing

numbers. For an interval U ∈ If , say f is badly approximated by g in U if for

all x ∈ I, f̄ 6= ḡ. Let B(If ) be the number of intervals in If in which f is badly

approximated by g. Then
B(If )
Cr(f)

≥ 1

2
− Cr(g)

Cr(f)
.

Proof. For each J ∈ Ig, define XJ = {I ∈ If : I ⊆ J}. Note that ḡ is fixed on a

given J , whereas f̄ alternates, so the number of badly approximated intervals in XJ

is least when |XJ | is odd and the leftmost interval in Xj is not badly approximated,

giving the bound B(XJ) ≥ (|XJ | − 1)/2. Thus

B(If )
Cr(f)

≥ 1

Cr(f)

∑
J∈Ig

B(XJ) ≥ 1

Cr(f)

∑
J∈Ig

|XJ | − 1

2

=

∑
J∈Ig |XJ | − Cr(g)

2 Cr(f)
(3.2)

Observe that If −∪J∈IgXJ is the set of intervals which straddle a boundary between

intervals in Ig. There are at most Cr(g) − 1 such boundaries, so Cr(f) ≤ Cr(g) +∑
J∈Ig |XJ |, implying ∑

J∈Ig

|XJ | ≥ Cr(f)− Cr(g).

Substitution into (3.2) gives the result.

Given a neural network of semialgebraic units implementing function f , we now

give a bound on the crossing number of the restriction of f to any line through its

domain. That is, using (t, γ)-poly to denote piecewise polynomials with t polynomial

intervals of maximum total degree γ,
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Lemma 3.10. Suppose f : Rr → R is implemented by a fully-connected network of

depth d with m (t, α, β)-semi-algebraic gates, α, β ≥ 1. Let h : R → Rr be an affine

map. Then Cr(f ◦ h) ≤ 2(2tmα/d)dβd
2
.

This is proved by induction, aided by the following result.

Technical Lemma. Suppose f : Rk → R is (s, α, β)-semi-algebraic and (g1, . . . , gk)

are (t, γ)-poly. Then f(g1, . . . , gk(x)) is (stk(1 + αγ), βγ)-poly.

Proof. Let {qi}si=1 be the set of polynomials defining the regions for f and let Qi =

qi(g1, . . . , gk).

First, we claim that for all i, Qi is (tk, αγ)-poly: observe that for each i there

exists a partition of R into at most tk intervals which is a refinement of each of the

g’s partitions, and that Qi is polynomial over each of these intervals.

Now for each i consider IQi . By definition, each polynomial segment of the func-

tion Qi + 1/2 has at most αγ roots, so each segment contributes at most αγ + 1

intervals to Cr(Qi), for a total bound of tk(1 + αγ).

Now observe that the tk-sized partitions of R associated with each Qi have a

mutual refinement of size stk(1 + αγ). Thus f(g1, . . . , gk) is a fixed polynomial of

degree at most βγ over any one of these intervals, as desired.

Proof of Lemma 3.10. Suppose g : Rr → R is the (t, α, β)-semi-algebraic function

computed by some unit in the first layer of the given network. Then because h is

linear in each of its coordinates, g ◦ h : R → R is still (t, α, β)-semi-algebraic. Thus

the network obtained by replacing each unit g in the first layer with the unit g ◦ h
yields a network implementing f ◦h with units satisfying the same constraints as the

original network.

Let mi be the number of units in each layer of this network (so
∑d

i=1 mi = m)

and for notational convenience let Bi = β
∑i−1
j=1 j = βi(i−1)/2. We will first show by

induction on i that all units in layer i = 1, 2, . . . , d are
(
(2tα)iBi(

∏i−1
j=1 mi), β

i
)
-poly

We will then relax this bound to prove the lemma.

As a convenient base case, suppose d = 0. Then the network consists of a single

(t, α, β)-semi-algebraic unit implementing a function g : R → R. Treating the input

vertex as the identity function (which is (1, 1)-poly), we may apply the technical

lemma to get that g is (t(1 + α), β)-poly, and is thus (2tα, β)-poly because α ≥ 1.

Now consider a unit v in layer i, which by the given is (t, α, β)-semi-algebraic

and connected to at most mi−1 preceding nodes. Then if each of its preceding units
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are (`, γ)-poly, by the technical lemma, v is (t`mi−1(1 + αγ), βγ)-poly. Now by the

inductive hypothesis each of the mi−1 units in layer i− 1 are(
(2tα)i−1Bi−1(

∏i−2
j=1mi), β

i−1
)
-poly,

and so substituting we have that v is(
2i−1tiαi−1(

∏i−1
j=1mj)Bi−1(1 + αβi−1), βi

)
-poly.

This entails the desired bound since 1 + αβi−1 ≤ 2αβi−1. In particular, the output

unit (and thus f ◦ h) is (
(2tα)dβd(d−1)/2

∏d−1
i=1 mi, β

d
)
-poly

We now relax this bound to prove the lemma. Noting that there is one unit in

layer d, by Jensen’s inequality we have

ln

(
d−1∏
i=1

mi

)
= ln

(
d∏
i=1

mi

)
≤ d ln(m/d) = ln(m/d)d,

and so
∏d−1

i=1 mi ≤ (m/d)d. Further, as we saw in the proof of the technical lemma, an

(`, γ)-poly function has crossing number upper-bounded by `(1+γ). Thus Cr(f ◦h) ≤
(2tmα/d)dβd

2
(1 + βd) ≤ 2(2tmα/d)dβd

2
because m is at least d and t, α, β ≥ 1.

And the last lemma, an explicit construction of a highly oscillatory function. We

are now working in the restricted domain [0, 1], and so below If is the collection of

intervals as before, but restricted to [0, 1].

Lemma 3.11. Define F (x) = 2σ(x) − 4σ(x − 1/2) for σ = max{0, x} and d ≥ 1.

Then Cr(F d) = 2d + 1, for each U ∈ IF d ,∫
U

|F d(x)− 1/2| dx ≥ 2−d−3

and there exists a network of ReLUs of depth d+ 1 and at most 2 units per layer that

implements F d.

Proof. The crossing number of F d is easy to check as F d is a triangle wave with

period 2−d. Observe that for each U ∈ IF d , (F d − 1/2)|U makes a triangle with the

x-axis of height 1/2 and base 2−d−1 if 0 ∈ U or 1 ∈ U , or 2−d otherwise. Thus∫
U
|F d(x)− 1/2| dx ≥ 2−d−1/4 = 2−d−3.
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It is easy to check an ReLU network of depth d + 1 implementing F d may be

constructed as follows Layers 1, . . . , d each have two units. In layer one, the upper

unit implements σ(x) and the lower implements σ(x − 1/2). Each unit in layers

` = 2, . . . , d has two inputs, say x from the upper unit of layer `− 1 and y from the

lower unit of layer `−1. Let the upper unit in layer ` therefore implement σ(2x−4y)

and the lower unit implement σ(2x − 4y − 1/2). Finally, let the single unit of layer

d+ 1 implement σ(2x− 4y).

Proof of Theorem 3.8. Let f0(x) = F d3+4(x) and define f : Rr → R as f(x) = f0(x1)

for x = (x1, . . . , xr). Then by Lemma 3.11, we have an ReLU network implementing

f with d3 + 5 layers, 2d3 + 9 units, and 4 + r distinct programmable parameters. Also

by Lemma 3.11, Cr(f0) = 2d
3+4 + 1 and so for all U ∈ If0 ,∫

U

|f0(x)− 1/2| dx ≥ 1

2d3+7

≥ 1

23(2d3+4 + 1)
=

1

8 Cr(f0)
. (3.3)

Now suppose g is implemented by a network of depth d with at most m units,

all (t, α, β)-semi-algebraic. For y = (y2, . . . , yr) ∈ Rr−1, define hy : R → Rr by

hy(x) = (x, y2, . . . , yr). Noting that h is affine, we have by Lemma 3.10 that for all

y ∈ Rr−1,

Cr(g ◦ hy) ≤ 2(2tmαβd)dβd
2 ≤ 4(tmαβ)d

2 ≤ 2d
3+2. (3.4)

We now bound ‖f ◦ hy − g ◦ hy‖1 from below. For each U ∈ If , let BU = 1 if

f ◦ hy is badly approximated by g ◦ hy in U , and otherwise let BU = 0. Then for any

y ∈ Rr−1,∫
[0,1]

|(f ◦ hy)(x)− (g ◦ hy)(x)| dx =
∑
U∈If

∫
U

|(f ◦ hy)(x)− (g ◦ hy)(x)| dx

≥
∑
U∈If

∫
U

BU |(f ◦ hy)(x)− 1/2| dx

=
∑
U∈If

BU

∫
U

|(f0)(x)− 1/2| dx

≥ 1

8 Cr(f0)

∑
U∈If

BU =
B(If0)

8 Cr(f0)
by (3.3)

≥ 1

16
− Cr(g ◦ hy)

8 Cr(f0)
by Lemma 3.9

≥ 1

16

(
1− 2(2d

3+2)

2d3+4

)
=

1

32
. by (3.4)
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According to this bound we therefore have∫
[0,1]d
|f(x)− g(x)| dx =

∫
[0,1]d−1

∫
[0,1]

|(f ◦ hy)(x)− (g ◦ hy)(x)| dx dy ≥ 1

32
.

In closing, we note that both Daniely and Telgarsky ended up counting oscillations,

though tighter separations (like Daniely’s) appear to require more careful analysis.

Further, if we could characterize entire classes of functions that are amenable

to these sorts of separations, that would go a long way towards determining some

recommendations for network designs to avoid underfitting. The Daniely result does

some of that—the full result in the original paper does characterize classes of functions

that give such a separation. But even still these classes are restricted to the somewhat

strange domain of Sr−1 × Sr−1.

One general pattern to note among all of these separating functions is that of

their compositionality. Safran & Shamir’s is the composition of the norm and a step

function, Daniely’s is the composition of the inner product and a sine function, and

Telgarsky’s is a collection of compositions. If we were to search for a way to separate

depth 3 networks from depth 4, we may want to consider other function compositions

that cannot be easily “flattened.”
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Conclusion

Understanding the expressivity of neural networks is a difficult problem for a number

of reasons. Some of these are practical, in that it is a challenge to settle on a definition

of a neural network that contains all ANN-like objects used in practice, and it’s hard

to guarantee that any result will be future proof as we’re still unsure what the essential

properties of a given network model are.

But as this thesis attempts to illustrate, there are deep mathematical challenges

embedded in ANN architectures as well. These find their way in through ANNs’

similarity with boolean circuits, but also from approximation theory. In particular,

as we observed at least once in each chapter, many of the extant techniques are tied

tightly to the special structure of depth-two networks. It appears that the theoret-

ical community still awaits a better general understanding of function composition,

though the study of fractals (e.g., [20], [21]) may engender this in the future.

At the same time, there appears to be hope for the development of underfitting

avoidance strategies: understanding the relationship between “compositionality” and

separation results may be a fruitful research avenue, one which Poggio (e.g., [24])

and others have already started down. That is, if it is known that a target function

decomposes into a number of simpler functions, efficient deep representation may be

relatively easy to find.

The question, then, becomes how one might detect the “compositionality” in

samples from f . Certainly “compositionality” only has meaning when placed in the

context of a set of functions that one wishes to compose together to construct f . In

the ANNs here, that set has been {σ(w·x+b)} for appropriate weights and biases, and

as the separation results have demonstrated, depth lends these simple nonlinearities

efficient means by which to oscillate.

Indeed, each separation result made use of oscillations in some way. In particular,

consider Telgarsky’s crossing number, Cr(f). Supposing we had direct access to f ,

by measuring its crossing number and using the upper bound estimates of crossing

numbers of networks proved in Lemma 3.10, along with the error estimate proved
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in Lemma 3.9, we may discover lower bounds on the size, depth, or width that is

required for learning close approximations to f .

Once we remove direct access to f , and must infer its crossing number from a

sample, even more questions arise. How many samples are required to get a good

approximation of Cr(f)? What is the computational complexity of this task? Can we

create better, finer measurements that are tailored for specific activation functions?

Another research direction would be to characterize the relationship between dif-

ferent classes of compositions of Barron’s Γ functions (as explored in Corollary 2.5.1).

Can we prove ‘no-flattening’ theorems that guarantee compositions thereof are most

efficiently represented as deep networks? Might it help us discover a depth 3-4 sepa-

ration?

Whatever the particular answers to these questions might be, it is clear that the

study of neural network expressivity stands as an example of the interconnectedness of

applied investigation and theoretical exploration. May it encourage great discoveries

in the years ahead.
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