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Abstract

How many ways can an orientable surface be cut into k pieces such that every point
on the cut is necessary? More formally, how many graphs have an embedding on the
genus g torus such that 1) the surface is partitioned into k components, and 2) any
subset of the embedding does not partition the g torus into k components? We show
that answering this question is equivalent to the task of counting graphs that admit
rotation systems satisfying two inequalities: one depending on the number of faces in
the rotation system’s cellular embedding, and one depending on the chromatic number
of the cellular embedding’s dual graph.

Introduction

Suppose we desire to cut a surface in such a way as to separate it into a fixed number of
pieces with no extra or unnecessary cutting. More precisely, for a given surface S, we are
interested in determining which multigraphs G admit embeddings T : G ↪→ S such that

1. S \ im(T ) has k connected components, and

2. For any proper subgraph G′ ⊂ G, S \ T (G′) has fewer than k connected components.

Definition 1. An embedding of a graph G into a surface S which satisfies the conditions 1
and 2 above will be called a minimal k-cut of S. (If only condition 1 is satisfied, we will call
it a k-cut of S).

A simple example helps illustrate the conditions for being a minimal k-cut.

Example 2. The graph G = B2, a bouquet of two circles, admits a minimal 2-cut embedding
on the torus, shown in Figure 0.1. Other embeddings of B2 may be non-separating, non-
minimal 2-cuts, or 3-cuts, as shown in Figure 0.2.

Figure 0.1: The graph B2 and an embedding giving a minimal 2-cut of the torus.
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Figure 0.2: Embeddings of B2 which are respectively non-separating, separate three components, and non-
minimal.

In this paper we investigate the construction and enumeration of graphs which admit
minimal k-cut embeddings in orientable surfaces. The impetus for considering minimal cuts
arose from the work of Bernhard and Veerman, [1, 2], who studied the set of all points on
a Riemannian manifold equidistant from two distinguished points, known as a mediatrix.
These authors proved that a surface mediatrix must be homeomorphic to a finite, closed
simplicial 1-complex that produces a minimal 2-cut of the surface. This characterization
was then used to show that any mediatrix on the torus of genus one must be homeomorphic
to an embedding of one of five graphs shown in Figure ??. This classification of minimal
2-cuts on the genus 1 torus prompted the consideration of more general k-cuts on genus g
tori considered here.

Figure 0.3: Add caption

Previous authors have considered the separating and non-separating properties of graph
embeddings, but none appear to have considered minimal k-cuts. Giblin, [4], and Skoviera,
[6], investigated graphs which admit non-separating embeddings in a given surface.

Section 1 establishes necessary topological graph theory terminology. Section 2 first
provides basic bounds on the size of a graph admitting a minimal k-cut, then an exact
combinatorial characterization via rotation systems and their geometric duals.

1 Background

In all that follows, by graph we mean a finite multigraph, allowing loops and multiple edges.
For a surface S and graph G, an embedding of G into S is an injective immersion of (a
topological realization) of G into S. The connected components of the complement of the
image of an embedding will be called faces. An embedding is cellular if all of its faces are
homeomorphic to open discs and semi-cellular if faces are allowed to be open discs with some

2



Surface Separation

number of punctures. We will not require our embeddings to be cellular or semi-cellular, so
faces of the embedding may contain handles.

1.1 Embeddings

We will pursue enumeration algorithms for a variety of classes of minimal cuts, so it is
necessary to discuss combinatorial representations of graph embeddings. Here we extend
the canonical representation of a graph embedding, known as a rotation system, to the non-
cellular case. We depart slightly from the literature (e.g., [5]) by allowing rotation systems
to have multiple connected components.

Definition 3 (Rotation System). A rotation system is a pair of permutations (α, σ) on a
set D such that α is an involution and α and ασ are fixed-point-free. The set of orbits of D
under 〈α, σ〉 are the connected components of D. In the case that 〈α, σ〉 acts transitively on
S, we call the rotation system connected.

Given a rotation system R, we will write GR to denote its associated graph (where cycles
in σ are vertices and edges are drawn between two vertices when they contact a and α(a)
in their cycles, respectively). A connected rotation system fully determines a cellular graph
embedding.

2 Characterization of minimal k-cuts

Consider a graph G embedded as a minimal k-cut of a closed genus g surface S. Because we
are concerned only with topological realizations of G, we assume that all vertices of G have
valence greater than or equal to 3, apart from isolated loops (made from a single vertex and
edge). Under this assumption, if G contains no isolated loops,

e ≥ 3

2
v, (1)

where v, e are the number of vertices and edges of G, respectively. If G embeds as a minimal
2-cut and has no isolated loops, we have the stronger bound

e ≥ 2v, (2)

since valence 3 vertices (or odd vertices in general) cannot be part of a minimal 2-cut em-
bedding. The inequalities (1) and (2) will be used in the next section.

2.1 Euler characteristic analysis

Any embedding of G into a surface S determines a ribbon graph RG, which can be viewed as
a subset of S, [3]. Note that RG and G have the same Euler characteristic, χ(RG) = χ(G) =
v − e, since G is a deformation retract of RG. In the case of a minimal k-cut embedding,
removing RG from S and taking the closure of the result produces k surfaces with boundary,
S1, . . . , Sk. The equality

χ(S) = χ(S1) + · · ·χ(Sk) + χ(RG) (3)
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then follows from inclusion-exclusion for the Euler characteristic and the fact that the in-
tersections Si ∩ RG consist of disjoint unions of loops, with Euler characteristic 0. If gi, ni
denote the genus and number of boundary components, respectively, of surface Si, we have
from (3)

e− v = 2(k − 1) + 2

(
g −

k∑
i=1

gi

)
−

k∑
i=1

ni. (4)

Combining (4) with inequality (1) yields the bound

1

2
v ≤ 2(k − 1) + 2

(
g −

k∑
i=1

gi

)
−

k∑
i=1

ni (5)

for graphs G embedded as k-cuts. In the case of k = 2, combining (4) and (2) yields the
stronger bound

v ≤ 2(k − 1) + 2

(
g −

k∑
i=1

gi

)
−

k∑
i=1

ni. (6)

We are now prepared to give a crude bound on the size of a graph G that admits a minimal
k-cut embedding.

Proposition 4. If G admits a minimal k-cut of a genus g surface S, then

1

2
v ≤ k − 2 + 2g, e ≤ v + k − 2 + 2g. (7)

When k = 2 we have the stronger bound

v ≤ k − 2 + 2g, e ≤ v + k − 2 + 2g. (8)

2.2 Exact requirements for general min-cuts

The familiar concept of a dual graph to a planar graph embedding may be extended to
graphs on surfaces in the following way:

Definition 5 (Cycle Dual). Given a rotation system R = (α, β), its cycle dual is R∗ =
(βα, β).

Given an initial graph G, the cycle dual for a particular rotation system on G gives rise
to a dual graph G′. Our characterization of min-cuts will require analysis of the set of all
such dual graphs.

Definition 6 (Dual Set). Given a graph G, let R be the set of all rotation systems R such
that GR = G. Then the dual set of G is G∗ = {GR∗ : R ∈ R}

In what follows we reduce the question whether G admits a min-(g, k)-cut to a question
of what sort of graphs exist in G∗. We just need two more tools:
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Definition 7 (Rotation system associated with an embedding). Given an embedding G ↪→ T ,
the associated rotation system RG↪→T is obtained as follows: thicken G, remove the rest of
T , and close the boundaries of the remaining surface with discs. This defines a cellular
embedding of G (on some number of surfaces) and by extension the rotation system R.

Definition 8 (Gluing Graph). The gluing plan of a graph embedding G ↪→ T is a bipartite
multigraph where one vertex set is the connected components of G, the other vertex set is the
set of regions of G ↪→ T , and an edge is placed between connected component vG and region
vT when they share a boundary.

Theorem 9. G admits a (g, k)-cut iff there exists a G∗ ∈ G∗ such that

d ≤ v∗ − k + 1 ≤ 2g − e+ v,

where v∗ is the number of vertices in G∗ and d is the number of connected components in G.

Proof. Suppose G 7→ T is a (g, k)-cut embedding. Let T1, . . . , Tk be the regions of T as
partitioned by the embedding of G and let R be the rotation system associated with G 7→ T .
The genera in T can be grouped as follows: holes in the thickened G, holes cut by the
boundaries between the thickened G and the Tis, and holes in the Tis themselves. Let these
genera be counted respectively by gG, gcut, and gT .

To count gG, note that the genus of R is equal to gG. For any rotation system we have

2d− 2gR − f = v − e

=⇒ gR = d− 1

2
(e− v − f),

where d is the number of connected components in GR. Letting v∗ be the number of vertices
in GR∗,we thus have

gG = d+
1

2
(v + v∗ − e). (9)

because by definition there is exactly one vertex in GR∗ per face in R.
To count gcut, consider the gluing graph P of G 7→ T . By definition P has d+ k vertices

and, because there is one boundary for each vertex in GR∗ , we have

1− gcut = vP − eP
=⇒ gcut = v∗ − (k + d) + 1. (10)

Certainly gcut ≥ 0, so (10) gives us the first desired inequality. Combining (9) and (10), we
see that the total genus of T is

g =
1

2
(v∗ + e− v)− k + 1 + gT

≥ 1

2
(v∗ + e− v)− k + 1.

and elementary agebraic manipulation completes the implication.

5



Surface Separation

( ⇐= ) Suppose we have a graph G such that ∃G∗ ∈ G∗ such that

d ≤ v∗ − k + 1 ≤ 2g − e+ v

=⇒ g ≥ 1

2
(e− v + v∗)− k + 1 and d ≤ v∗ − k + 1.

We construct a (g, k)-cut embedding G 7→ T as follows:
Because G∗ ∈ G∗, there exists an R such that G∗ = GR∗ , so let G 7→ S be the (perhaps

multi-component) ribbon graph embedding defined by R. Further, let T1 be a surface of
genus g − 1

2
(v∗ − v + e) − k + 1 with v∗ − k + 1 boundaries, and let T2, . . . , Tk be discs.

Select v∗ − k + 1 boundaries from S such that at least one boundary from each connected
component is selected (note that we can do this because d ≤ v∗ − k + 1 by assumption)
and glue them to T1 in a one-to-one fashion (we can do this because the boundary sets are
equinumerous). Finally, glue the remaining V ∗− (v∗− k+ 1) = k− 1 boundaries in S to the
k − 1 discs T2, . . . , Tk in a one-to-one fashion.

This construction defines a new embedding G 7→ T . T has no boundary components
because the above construction defines an injective function from the equinumerous sets of
boundaries in S and boundaries in T1 ∪ T2 ∪ · · · ∪ Tk. G 7→ T is also a k-cut because each
region of the ribbon graph is attached to one of the k Tis.

If T is a g-torus then we are done. To determine the number of genera in T , apply the
equalities derived during the other direction of this proof:

gT = gG + gcut + gT1 + (gT2 + · · ·+ gTk)

=
(
d+

1

2
(v + v∗ − e)

)
+
(
v∗ − k − d+ 1

)
+
(
g − 1

2
(v∗ − v + e)− k + 1

)
= g.

Theorem 10. G admits a min-(g, k)-cut iff there exists a G∗ ∈ G∗ such that the condition
in the previous theorem holds and

γ(G∗) ≤ k,

where γ(·) denotes chromatic number.

Proof. ( =⇒ ) Suppose G admits a min-(g, k)-cut G 7→ T and let G∗ ∈ G∗ be the graph
of the cycle dual of the embedding’s associated rotation system. Now produce a coloring
of G∗ in the following way: assign a different color to each of the k regions, thicken G,
then propagate the color assignments of the regions to the boundaries of the thickened G.
Finally, for each vertex G∗, assign it the color currently assigned to its associated cycle in
the thickened graph.

Is this assignment a proper coloring? By way of contradiction suppose v1, v2 ∈ G∗ are
adjacent vertices with the same color assignment. Because v1, v2 are adjacent, they are
associated with cycles in R that share an edge e ∈ G. This means that in f = G 7→ T ,
f(e) is bordered by the same region on both sides. Thus f(e) is not needed for f to be a
(g, k)-cut, contradicting the given that G 7→ T is a minimal (g, k)-cut.

Observe that we have produced a proper k-coloring for G∗ ∈ G∗, so γ(G∗) ≤ k.
( ⇐= ) Suppose there is a G∗ ∈ G∗ that satisfies the inequalities stipulated by the

theorem.
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We will now construct an embedding from a minimum vertex coloring. Let one of the
vertex colors (the choice is arbitrary) be red and for each connected component of G∗ that
does not contain a red vertex, replace one color in this component with red. Note that
there are now at least d red vertices in G∗. Now select k − γ(G∗) vertices such that at least
one red vertex in each connected component is unselected and at least one vertex of each
other color is also unselected. Thus we are selecting k − γ(G∗) vertices from a set of size
v∗ −

(
γ(G∗) + d− 1

)
. This is possible because of the given

d ≤ v∗ − k + 1

=⇒ k − γ(G∗) ≤ v∗ −
(
γ(G∗) + d− 1

)
Finally, assign each of these selected vertices a new color, distinct from all the rest. Observe
that we now have a proper vertex coloring with exactly k colors where every connected
component contains a red vertex.

Let c1, . . . , ck be the number of vertices labeled with each of the k colors. Now define T1
to be a surface of genus g− 1

2
(v∗−v+e)−k+1 with c1 boundary components and T2, . . . , Tk

be spheres with c2, . . . , cγ(G∗) respective punctures. Color the boundaries of the ribbon graph
of R with their associated vertex colors in G∗ and for each i = 1, 2, . . . , k glue boundaries
of color i in the ribbon graph to boundaries in Ti in a one-to-one fashion. Observe that by
construction the resulting surface T has no boundaries.

It remains to show that T has genus g and that G 7→ T is a minimal k-cut (it is certainly
a k-cut). That T ’s genus is g follows in precisely the same way as in the previous theorem.
To see minimality, suppose to the contrary that there is an unecessary edge e ∈ G under the
mapping f = G 7→ T . This implies f(e) is bordered by the same region on both sides. But
by construction and the definition of G∗, this means that the two vertices of G∗ that are
assoicated with the boundaries on either side of f(e) are the same color. This contradicts
the given that we began with a proper coloring.

These proofs give rise to new “spectrum”-related questions concerning graph embeddings.
Certainly {v(G∗) : G∗ ∈ G∗} is an uninterrupted integer interval (because of graph genus
spectrum proofy things), but is {γ(G∗) : G∗ ∈ G∗} also? Does

{(
v(G∗), γ(G∗)

)
: G∗ ∈ G∗

}
form a rectangle in Z2 or some more complicated subset?
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